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Abstract:

Large scale Internet of Things (loT) deployments such as Low Power Wide Area Networks
(LPWANs) and the LoRaWAN have become central to the large-scale Internet of Things (IoT)
deployment because of their long-range communications and low energy use. Nevertheless, the
scalability and reliability of LoRaWAN networks is inherently limited by the unslotted ALOHA-
based medium access scheme, fixed resource setup and severe regulatory constraints of duty-
cycle. The difficulties are magnified in crowded and mobile setups like smart cities, where non-
stationary and heavy traffic conditions result in severe packet collisions, high latency and poor
quality of service (QoS). In this paper, a smart, predictive, and duty-cycle-aware resource
management framework is proposed to be utilized by LoRaWAN networks that would
reorganize network operation by transitioning it to reactive control to proactive decision-
making. The proposed solution combines a hybrid Spatio-temporal traffic prediction model
with Graph Convolutional Networks (GCN) and Gated Recurrent Units (GRU) as well as an
adaptive resource management module that is placed at the edge of the network. Through
learning of spatial contours between the entities in the network and time-based traffic dynamics,
the framework effectively predicts short time congestion and pre-emptively modulates
spreading factors, channels, and transmission scheduling and maintains the entire regulatory
adherence. Extensive tests based on actual traffic traces and high-density simulation evidence
that the suggested framework is far superior to the traditional LoRaWAN Adaptive Data Rate
(ADR) schemes and the established machine learning model. GNCN-GRU model provides a
18% decrease in the error of traffic prediction relative to the conventional recurrent models
with the resource adaptation being proactive which minimizes the packet collisions by up to 30
percent in the ultra-dense situation. Besides, the framework maintains up to 21% increase in
the ratio of packet delivery at the 1000 nodes per gateway, and it ensures a sub-500ms latency
of mission-critical traffic despite a rigid duty-cycle limit. The experiments of edge deployment
prove the viability of the method, with a latency of inference of less than 42ms and a minimum
of computational cost. Comprehensively, the findings indicate that edge Spatio-temporal
intelligence is feasible and applicable to scalable, reliable, and regulation-friendly LoRaWAN
operation, and the next-generation smart city and industrial loT applications are feasible.

Key Words: LoRaWAN;, IoT Traffic Prediction; Spatio-Temporal Deep Learning, Edge Intelligence;
Adaptive Resource Management, Duty-Cycle Aware Scheduling.
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1. Introduction

The Internet of Things (IoT) has fundamentally
redefined how devices can communicate,
interact, and coordinate the exchange of
information and data, thus, making it possible
to achieve pervasive sensing and autonomous
functioning across a wide-range application
scope, including smart cities, environmental
monitoring, precision agriculture, medical
systems, and automation within an industrial
environment (Bonilla et al., 2023; Farhad and
Pyun, 2023). This has been triggered by the
realization of communication technologies
which are able to facilitate the huge number of
devices connected to the Internet of Things
even as they remain ultra-low in power usage,
long in communication range as well as
minimal infrastructural cost. In this regard, Low
Power Wide Area Networks (LPWANSs) have
appeared as a foundation of the large-scale loT
connectivity, as they provide long-range
wireless connectivity at very low energy
consumption, thus allowing battery-powered
devices to operate years continuously without
maintenance interventions.

LoRaWAN (Long Range Wide Area Network)
is one of the LPWAN technologies that have
received a large amount of scholarly
publication due to the open standard design,
flexible  deployment architecture, and
alignment with a wide range of [oT applications
(Bonilla et al., 2023; Farhad and Pyun, 2023).
LoRaWAN uses a star-of-stars topology
whereby lightweight end devices send uplink
packets straight to one or multiple gateways,
which, in its turn, routes the information to a
central network server where it is then
processed and controlled. The said architectural
paradigm enables scalable connection over a
number of kilometres without consuming much
power at the device level. Therefore,
LoRaWAN has found wide use in the smart
metering, environmental sensing, waste
management, industrial [oT, and urban mobility
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systems both in metropolitan and rural settings
(Bonilla et al., 2023).

Although LoRaWAN has its advantages, it also
has inherent challenges that limit its scalability
and throughput in addition to Quality of Service
(QoS) especially in densely deployed
applications. LoRaWAN employs the unslotted
pure ALOHA access scheme at Medium Access
Control (MAC) layer enabling end devices to
send and transmit without any previous channel
measurements. This mechanism is intuitively
straightforward and energy efficient, but
significantly adds the risk of packet collisions
with the increase of the density of the devices
and the volume of traffic (Povalac et al., 2023;
Bonilla et al., 2023). Also, regulatory duty-
cycle restrictions place strict conditions on
channel access forcing the devices to delay
transmissions following the delivery of packets.
These constraints exacerbate the latency,
constrain the effective throughput and further
congestion at bursts in the traffic. These
consequences are sharply felt in smart cities in
which  heterogeneous devices generate
intermittent event-based traffic, which form
highly dynamic and unpredictable network
behavior (Povalac et al., 2023).

Among the most obvious disadvantages of the
current implementations of the LoRaWAN lies
the fact that they are ad-hoc and fixed in
configuring  parameters  of  networks
configuration such as the spreading factor (SF),
the transmission power and the channel
allocation. They are generally configured in a
standard manner or in a reactive manner
without consideration of altering the traffic
dynamics or the existing network properties
(Bonilla et al., 2023). This contributes to the
reality that the LoRaWAN networks tend to
lack an effective spectrum allocation,
retransmission, increased packet loss and
diminished quality of service. It has been
discovered that they particularly pose a threat to
latency-and mission-critical IoT applications
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i.e., real-time monitoring, emergency response
systems, and smarter transportation networks.

To address these impediments, machine
learning (ML) has become a potential
technology to facilitate intelligent, predictive,
and adaptive management of the networks
within the IoT. Knowing the historical and the
current tendencies of the networks, the ML
models will be able to forecast the future of the
traffic and assist in planning the resources
proactively (Farhad and Pyun, 2023; Alkhayyal
and Mostafa, 2025). In particular, sequence-
learning based models, such as Long Short-
Term Memory (LSTM) and Gated Recurrent
Unit (GRU) neural networks, have been
demonstrated to be extremely efficient in non-
linear time-series modelling of time-
dependencies as well as taking into account
long-term time-dependencies. These features
make them particularly appropriate in traffic
prediction tasks in the wireless communication
networks, where the traffic dynamics are
frequently complex and non-stationary
(Alkhayyal and Mostafa, 2025). Deep learning
models have a better ability to model bursty
traffic patterns and temporal correlations that
conventional statistical methods like ARIMA
or SARIMA cannot model, arising in real-life
applications of [oT deployments.

More recent developments on edge intelligence
also increase the feasibility of ML-based
optimization of LoRaWAN networks. The
predictive models can now be done in a
lightweight manner and therefore can be
deployed directly to a gateway or local edge
server; thus, the near real-time inference can be
realized with a smaller latency, forcing less
backhaul as well as added energy efficiency.
Using such a combination of traffic forecasts
and adaptive control, including the duty-cycle-
conscious  scheduling, the dynamically
allocated spreading factor, and reconfigured
channels, LoORaWAN networks will be able to
significantly — mitigate packet collisions,
improve the ratio of packet deliveries, and high
throughput when the network is subject to
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variable conditions (Farhad & Pyun, 2023;
Alkhayyal and Mostafa, 2025). As an example,
boosting-based ML has proven to be very
fruitful in enhancing path loss prediction and
network performance under a variety of
environmental factors, thus highlighting the
potential practical utility of advanced ML-
driven optimization (Alkhayyal and Mostafa,
2025).

Despite the fact that previous research has
focused on the implementation of ML solutions
to single LoRaWAN optimization issues (e.g.
energy efficiency optimization, spreading
factor optimization, and anomaly detection),
most of the existing solutions to these problems
consider each of them individually. A literature
review of LoORaWAN and artificial intelligence
integration demonstrates that there is an
increasingly growing interest in the research
area but indicates that there is a lack of end-to-
end models that combine both traffic prediction
and proactive resource management with
deployment limitations (Bonilla et al., 2023;
Farhad and Pyun, 2023). Specifically, the
intelligent traffic forecasting and its direct
integration with adaptive network control
within the circumstances of duty-cycle
constraints is not a well-researched area.

Driven by these gaps, this study suggests an
intelligent traffic prediction framework by
machine learning in IoT networks based on
LoRaWAN. This approach is a combination of
the latest time-series deep learning models and
the use of Spatio-temporal feature extraction to
precisely predict the short-term and medium-
term traffic flow. They are then operationalized
into adaptive resource management policies
that implemental the network parameter to
avoid network congestion, decreased latency,
and improved network stability. It lays more
stress on a practical life implementation
considering the applicability of the edges
deployed to actual deployment and the
allocated computational resources and the
suitable handoff with the already deployed
LoRaWAN protocol stacks.
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The main contributions of the work include the
holistic study of LoRaWAN traffic behavior
with the help of both real-world and synthetic
data to determine the salient Spatio-temporal
factors affecting congestion and performance
degradation; the creation and testing of ML-
based predictive models that greatly surpass the
traditional statistical baselines; and the
demonstration of proactive and prediction-
based resource management strategies that can
produce a quantifiable improvement in the
reduction of collisions, packet delivery, and
QoS. All together, these contributions improve
the state of the art in the intelligent management
of LPWANSs and help to create the scalable,
energy-efficient as well as self-optimizing
infrastructures of smart [oT communication.

2. Literature Review

The current rapid growth of the Internet of
Things (IoT) has required the necessity to make
a radical shift in the approach to managing the
network, and replace the rule-based and static
structure with adaptive, intelligent, and self-
organizing communication structures. Since
deployments of IoT grow in size and
heterogeneity, conventional network control
tools can no longer be reliably, efficiently, or
provide Quality of Service (QoS). Thus, the
current literature has been concerned with
identifying the drawbacks of already available
Low Power Wide Area Network (LPWAN)
technologies, specifically LoRaWAN, and
investigating the possibilities of machine
learning-inspired approaches to forecasting
traffic, optimization of resources, and control of
the network in real-time. The current literature
falls into four research areas that are closely
related to each other, namely scalability and
MAC-layer limitations in LoRaWAN, use of
deep learning to predict traffic, ML-based
resource optimization strategies, and the new
paradigm of edge intelligence.

The basic issue with LoRaW AN networks is the
architecture of its Medium Access Control
(MAC) layer based on unslotted Pure ALOHA
access scheme. Although this technique reduces
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the complexity of the devices used and their
power use, it greatly affects scalability. The
likelihood of packet collisions rises at a high
rate with the degree of device density with a
resultant sharp decline in Packet Delivery Ratio
(PDR). Povalac et al. (2023) work with
demonstrating that, by dense deployments, the
probability of collision grows non-linearly, and
the capture effect, which makes the stronger
communications mutable weaker messages
concurrently, only enhance unfairness and
packet loss even further. Such effects are
amplified especially in urban [oT cases where
heterogeneous devices cause asynchronous and
bursty traffic.

The assumption of perfect orthogonality is not
true in LoORaWAN though the spreading factors
(SFs) are quasi-orthogonal used to reduce
interference; this does not occur when the
traffic load is high. Bonilla et al. (2023) disclose
that inter-SF interference is severe when there
is an occupancy in channels, compromising the
efficacy of SF diversity, and leads to a greater
amount of packet corruption. Besides
interference issues, regulatory duty-cycle
constraints provide rigid constraints concerning
the use of the channels. In band like the EU868
band, 100 percentage restriction on duty-cycle
is a severe constraint to transmission
opportunities. As demonstrated by Farhad and
Pyun (2023), the duty-cycle cool-down times in
traffic bursts are not considered by the static
Adaptive Data Rate (ADR) mechanisms, which
result in the overflow of the buffers, the
excessive delays in the queue, and the high
latency rates. All these constraints underscore
the inefficiency of the traditional, reactive
configuration approaches in the dynamic loT
settings.

In order to mitigate the random nature of the
ALOHA-based access, recent works have
considered the concept of time-series traffic
forecasting as a way of predicting congestion
and proactively controlling the network. The
conventional statistical models, e.g. ARIMA,
are becoming inappropriate to IoT traffic
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because it is based on assumptions of linearity
and stationarity. On the contrary, deep learning
models have performed better to model non-
linear and non-stationary dynamics in traffic.
Alkhayyal and Mostafa (2025) offer an
extensive comparison of the Recurrent Neural
Network (RNN) architectures presenting that
both Long Short-term Memory (LSTM) and
Gated Recurrent Unit (GRU) are more effective
than classical approaches in their ability to
capture long-term temporal dependencies. The
LSTM networks are especially efficient to
detect the periodic traffic patterns typical of
smart metering and environmental sensing
whereas GRU ones provide a similar level of
accuracy with a lower level of computational
complexity, making them appealing to latency-
sensitive tasks.

In addition to the purely temporal modelling,
the recent literature focuses on the significance
of describing spatial correlations between IoT
devices. Computation Traffic patterns in
LoRaWAN Network are not only time
dependent but also space dependent due to
clustering of devices, distribution of load on the
gateway, and propagation environment. The
authors  present hybrid Spatio-temporal
architectures  that represent LoRaWAN
deployments as graphs and apply Graph
Convolutional Networks (GCNs) to extract
spatial features after which they are fed into the
LSTM networks, which later predict the
temporal features (Dai et al., 2025). These
methods prove to be more accurate in
forecasting especially in thick networks where
the issue of spatial congestion is eminent.

Machine learning has been used to build upon
predictive capabilities, and has previously been
used to allow proactive resource optimization in
LoRaWAN networks. Instead of depending on
the heuristically-based ADR schemes, ML-
based approaches strive to adjust the parameters
of a network dynamically, depending on the
forecasted conditions. Nisar et al. (2025)
suggest an ML-based framework of adaptive
spreading factor and transmission power
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assignment that makes use of the predicted
Signal-to-Noise Ratio (SNR) trends. Their
findings reveal that their results demonstrate an
energy saving of up to 25 percent over the
standard LoRaW AN setup, and at the same time
the reliability is also increased. In cases when
the training data is sparse, ensemble and
boosting methods have been of interest.
According to Farhad and Pyun (2023), by
increasing algorithms like XGBoost and
Light GBM, the accuracy in link-quality and
path-loss prediction are high, which makes
them a successful trade-off between the
efficiency of a given algorithm and the
predictability in environmental monitoring
application.

The increasing interest in edge computing has
contributed to the practicality of intelligent
LoRaWAN optimization even more. Cloud-
based management is centrally located, which
causes latency and backhaul overheads that do
not suit [oT services that need timeliness. Edge
intelligence is a solution to such issues because
it allows inference and control to be brought
nearer to the data source. Alkhayyal (2025)
examines the idea of lightweight MLs installed
on LoRaWAN gateways, showing significant
trade-offs to be parameter pruning and
quantization of model, which avoidional waste
computational and memory consumption and
predict accurately. Gateway level inference
leads to the near real time reconfiguration of

network configurations as it minimizes
response time to mission critical applications
like emergencies alerts and industrial
surveillance.

There is a new body of research which is
applying traffic prediction in conjunction with
enhanced scheduling logic taking duty-cycle
constraints into explicit consideration. Instead
of responding to collisions once they have
occurred, gateways have the opportunity to use
anticipated levels of congestion to pre-compute
transmission windows and actively command
end devices to switch channels or spreading
factors. Even though there is some -early
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evidence of the possible effectiveness of such
predictive scheduling, this field has not been
investigated extensively, especially in real-
world implementation practice where both
regulatory limitations and traffic variability
exist.

Even though there has been a considerable
improvement in these areas, a gap in research is
still present. The other literature tends to treat
the issues of predicting traffic and optimizing
resources separately, leading to disjointed
solutions which do not reflect the inter-
relationships between predictive quality,

VOLUME 5 ISSUE 01 (2026)

regulatory complexity and operational viability.
In addition, most of the suggested ML methods
are also tested on synthetic data, which is not
entirely representative of bursty, irregular and
context-dependent real urban IoT traffic.
Avoidable gaps exist in end to end, edge
deployable, frameworks, which combine
Spatio-temporal  traffic  prediction and
proactive, duty-cycle, conscious resource
management in realistic operating scenarios.
This gap is necessary in order to achieve
scalable, reliable, and intelligent LoRaWAN
networks that can be used to support next-
generation [oT applications.

Table 1: Comparative Analysis of LoRaWAN Resource Management Approaches

Feature Statistical Models Standard ML-Based Proactive Proposed Framework
(ARIMA) ADR ADR

Traffic Linear only Reactive Non-linear/Predictive ~ Spatio-

Handling Temporal/Adaptive

Latency High Medium Low Ultra-Low (Edge-

based)

Scalability Low Low Moderate High (Intelligent)

Duty-Cycle No Yes (Static) ~ Often Neglected Yes (Direct Integration)

Aware

3. Methodology

The research provides a predictive and adaptive
traffic-aware resource management in the
LoRaWAN networks. The methodology has
been designed in such a way that it integrates
traffic forecasting, based on machine learning,
into the realities of deployment, such as
regulatory duty-cycle constraints,
computational cost and usability in real time.
The suggested solution is based on a systematic
pipeline that includes the data collection,
Spatio-temporal features modelling, predictive
inference at the network end and proactive
resource adaptation.

System Architecture

The recommended framework wuses a
distributed model based on the intelligence
architecture which decouples model training
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and inference to guarantee scalability and
deployment. Offline model training and
hyperparameter optimization are done off the
centralized server and based on historical traffic
traces. This is a stage that allows a large-scale
exploration of model configurations without
exerting a high computational constraint on the
network infrastructure. After the training, the
prediction model is reduced in size and
implemented on the level at the LoORaWAN
gateway. This is carried out by inference at the
gateway that can to estimate traffic near real
time and control decisions on the network
without depending on cloud-based processing.
This edge-based design minimizes the control-
loop latency and backhaul traffic and allows
gateways to operate as smart controllers which
can react immediately to the changing network
conditions.
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Data Mining and Characterizing Data

A hybrid data strategy is used to guarantee the
ability to generalize to a variety of operational
conditions. Traffic traces of the urban-scale
LoRaWAN system reported by Povalac et al.
(2023) are obtained in the forms of real-world
traces, and they include realistic propagation
scenario, interpreter  interaction and
heterogeneity of the traffic. In order to
supplement such data, artificial traffic is created
with the help of the NS -3 LoRaWAN
simulation module, which permits to evaluate it
controlled in the framework of high-density
deployment and burst traffic events. Raw
metadata on packets and protocol headers are
translated into structural representations of
features. Temporal characteristics consist of
inter-arrives times of packets, moving averages
of traffic and periodically recorded indicators of
diurnal and weekly cycles. The Signal-to-Noise
Ratio (SNR), Received Signal Strength
Indicator (RSSI), frequency error is also
included in the feature of link-quality in order
to describe the channel conditions. Moreover,
the network-level indicators, i.e., spreading
factor occupancy and sub-band duty-cycle
usage are derived so that the situational
awareness of network load and the regulatory
constraints can be achieved. This multi
dimension feature space allows the predictive
model to acquire elaborate interactions among
the dynamics of traffic and resource
availability.

Spatio-temporal Traffic Forecasting Model.

The LoRaWAN traffic dynamics depend on
both the dynamics of time and spatial
correlations that are caused by the overlapping
of gateway coverage and node dispersion. The
proposed predictive engine uses a hybrid
Spatio-temporal learning architecture in order
to capture these dependencies. A Graph
Convolutional Network (GCN) is used to model
spatial relationships with network entities being
modelled as nodes and scenes being connected
with each other and shared channels through a
graph edge. The GCN acquires the spatial
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congestion patterns and propagation of
interface between neighbouring gateways
which reduces hidden-node effects as well as
localized overload situations. A Gated
Recurrent Unit (GRU) Network then takes the
features that were spatially encoded and
attempts to capture any temporal dependency.
GRU architecture is chosen because the
architecture has a good balance between
expressive power and computation efficiency.
It can store long-term dependencies, like traffic
cycles, at a lower number of parameters than
Long Short-term Memory (LSTM) networks
can store. This design will provide the ability to
correctly make predictions and at the same time
be capable of running on hardware with limited
resources of a gateway.

Pre-emptive Reactive Resource

Management

The Spatio-temporal model provides traffic
forecasts which are transformed into proactive
network responses in an Adaptive Resource
Management (ARM) module. The ARM
module is predict-then-act based, which allows
performing preventive mitigation of the
congestion before packet collisions and
undesired delays. As the model predicts the
spread load of the particular spreading factors
or channels, the ARM module will compute
different settings and provide downlink MAC
commands to dis-assign, and reassign feasible
devices, to less crowded resources. This is
proactive reconfiguration that redistribution of
traffic load and minimizing the probability of
collision. Precise message tier limiting
regulatory constraints are formally reflected in
the logic of adaptation. A credit-based system
of tracking the use of the duty-cycle is used to
continually track the sub-band usage in
accordance to regional rules, e.g. the 1 percent
duty-cycle limit within the EU868 band. In case
the predicted demand is greater than the
allowable transmission capacity, the scheduler
uses a priority-conscious deferral mechanism.
The priorities are given to time-sensitive traffic
and the non-essential periodical transmissions
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are postponed to ensure compliance and quality
of services.

Implementation and Edge Deployment
Python Java Perl .NET Java Lovelace

The framework suggested is executed with the
help of PyTorch to develop the model and train
it. To deploy a trained model, trained models
are converted to lightweight inference formats
with the TensorFlow Lite microcontrollers. The
target deployment devices are gateway-like
platforms, which are Raspberry-based
gateways and gateways based on industrial
LoRaWAN foundations that have an embedded
accelerator. ~ Parameters  pruning  and
quantization are used as model optimization
tools to make sure that inference latency is
lower than standard LoRaWAN packet inter-
arrival times. This ensures that predictions and
related network modifications can be pursued in
near real time without the need to interfere with
the regular operations of the gateway.

Evaluation Metrics

The work of the proposed methodology is
measured with the help of both predictive and
network-based measurements. The standard
time-series error measures are used to measure
the accuracy of prediction. The parameters used
to measure the network performance are Packet
Delivery Ratio (PDR), collision probability,
throughput, and end-to-end latency. The
analysis of energy efficiency is also done to
make sure that extra signaling of control does
not contribute a lot of extra power at end
devices. Combined, these measures give a
holistic evaluation of the framework in
enhancing the scalability, reliability and
efficiency of operation of Lora WAN.

4. Results and Discussion
Traffic Prediction Accuracy Analysis

The comparison of the accuracy of four models,
namely ARIMA, LSTM, Standard RNN and the
proposed GCN-GRU framework, in predicting
traffic in terms of the Mean Absolute Error
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(MAE) is shown in figure 1. Reducing values
of MAE denote enhanced prediction
performance. The original ARIMA model
demonstrates the largest MAE ([?]0.14), which
indicates its weakness in the ability to model the
very dynamic and non-stationary traffic
patterns that are a characteristic of the
LoRaWAN-based IoT networks. Although
ARIMA is useful in linear and stationary time
series, it does not achieve the characteristic of
abrupt changes in traffic and burst
transmissions, which are prevalent during
intensive deployment of [oT systems.

Temporal models based on deep learning show
significant increases. The LSTM model
minimizes the MAE to about 0.118, and it is
advantageous since the model has a gated
architecture that allows it to learn long-term
temporal dependencies. Nevertheless, it is still
limited by the lack of spatial awareness. In the
same manner, the Standard RNN results in an
MAE of approximately 0.125 and has a weak
capability to capture intricate temporal
correlations along with a vanishing gradient
problem.

The GCN-GRU model that has been proposed
has the lowest MAE ([?]0.102), which is an
error reduction of almost 18% over the
Standard RNN. It is largely due to the fact that
this has been enhanced by the addition of Graph
Convolutional Networks (GCN) which can
capture spatial correlations between end
devices and gateways of geographically
distributed nature, and the effective time
modeling of the GRU. Through the mutual
relationship learning of the Spatio-temporal
relationships, the proposed structure can well
predict the localized traffic peaks and jams.
Overall, the results confirm that incorporating
spatial topology into traffic prediction
significantly enhances forecasting accuracy,
making the GCN-GRU model particularly
suitable for proactive and adaptive resource
management in dense LoRaWAN
environments.
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Traffic Prediction Accuracy Comparison
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Figure 1: Traffic Prediction Accuracy Comparison

Collisions and Impact on Packet Delivery
Ratio (PDR)

Collision Mitigation Performance

The reduction in the collision experienced by
the proposed proactive spreading factor (SF)
scaling with different network densities is
shown in Figure 2. In medium-density cases,
the packet collisions are minimized by about 22
per cent, which means success in countering
early congestion. The more the network
density, the greater the benefits, and there can

be 26% and 30% collisions reduction in high-
density and  ultra-dense = deployment,
respectively.

Such benefits can be explained by the fact that
the framework can transitively redistribute
traffic between the SFs and channels with less
congestion into the predicted traffic patterns.
On the whole, the findings indicate that
predictive SF scaling is significantly better than
the traditional reactive strategies, especially
when the LoORaWAN is dense, and contributes
to the enhancement of network

Collision Mitigation via Proactive SF Scaling

Collision Reduction (%)

reliability and spectrum use.

Medium Density

High Density Ultra-Dense

Figure 2: Traffic Prediction Accuracy Comparison
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The information presented in the Figure 3
indicates that there is a definite performance
difference between the Proposed Framework
and the Standard ADR when the network
congestion increases. The two approaches
perform excellently at low density, 100
nodes/gateway where the proposed framework
ensures an almost perfect Packet Delivery Ratio
(PDR) of around 98.5% whereas the standard
stands at 96. At density of the device, however,
the Standard ADR follows a non-linear fall and

VOLUME 5 ISSUE 01 (2026)

reduces to a PDR of about 58.5% at 1000 nodes.
By comparison, the Proposed Framework is a
lot more resilient; even at 1000 nodes density it
maintains a PDR of 80, which is a huge 21.5%
increase over the baseline. This indicates that
the suggested system is probably using a better
mitigation of interferences or more effective
allocation of resources which makes it much
more  adapted to  high-density IoT
implementation when reliable

PDR Performance Under Increasing Network Density

100 A
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90 ~
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80 A

75 A

Packet Delivery Ratio (%)
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Proposed Framework

T
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400 600 800 1000

Device Density (Nodes per Gateway)

Figure 3: Traffic Prediction Accuracy Comparison

Duty-Cycle Compliance and Priority
Handling
The experimental outcomes of priority-

sensitive latency show the capacity of the
framework to uphold Quality of Service (QoS)
on mission-critical data with the limitation of
constricting duty-cycle requirements. The
Emergency traffic class shows the highest
performance with the latency of about 425ms
which is well under the QoS requirement of
500ms. The critical alarms are also managed
successfully, and they all reach the highest
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point right at 500ms threshold that validates the
effectiveness of the system in prioritizing
urgent transmissions. This prioritization
however comes at a heavy price to non-
essential data; Routine Telemetry has an
astronomical increase in latency and it shoots
up to more than 4200ms. Such an almost
tenfold variation in the delivery time gives a
clear understanding of the logic behind the
framework: the logic is to buffer or delay low-
priority packets so that high-priority
Emergency and Alarm signals could get the
duty-cycle "cooldown" periods cleared out first.
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Priority-Aware Latency Under Duty-Cycle Constraints
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Figure 4: Traffic Prediction Accuracy Comparison

Edge Implementation Performance

The implementation of the Edge Intelligence
was proved to be possible on Raspberry Pi-
based gateways.

Inference Latency: Model pruning and
quantization helped to record the average
inference time at 42ms. This falls comfortably
below the standard LoRaWAN uplink range,
achieving previously established results that it
is possible to compute a new resource scheme
and command a downlink in no more than a
single transmission cycle on the gateway.

Computational Overhead: The TensorFlow Lite
model did not exceed 15 percent of the
available RAM of the gateway, meaning that
the main packet-forwarding capabilities were
not affected.

Discussion

The given results prove the essential change in
the operation of the low-power wide-area
network (LPWAN) management towards the
reactive mode to the predictive and
intelligence-driven control. Traditional
LoRaWAN systems are myopic in nature
because the resource allocation decisions are
only made with regard to the past or real-time
network status. Conversely, the suggested
framework enables the gateway to have a
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future-oriented functionality through the use of
Spatio-temporal traffic prediction which allows
proactive congestion mitigation to be done
before the performance decays.

Among other things, there is a marked decrease
in the capture effect, which is a major
impairment in dense LoRaWAN networks in
which strong transmissions effectively crowd
the space of the weaker ones. The GCN-GRU
model is successful in spreading the signal
arrivals in time and frequency domains by
modeling network topology as a graph and
assigning various spreading factors and
channels proactively to geographically
clustered devices. This strategic dispersion
minimizes destructive interference resulting in
reduction in the collision rates and significant
enhancement of the ratio of packet delivery
especially in high and ultra-dense traffic
environments.

The framework also exhibits high scalability
effects where it is capable of supporting almost
twice the number of devices per square
kilometre than typical LoRaWAN systems and
still attain a tolerable quality-of-service. This
scalability is essential to smart city and
industrial IoT applications, the traffic of which
is very dynamic and non-stationary. The fact
that the learning model deployed successfully
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at the network edge is a further confirmation
that the idea of deep learning-based intelligence
is not only possible but also necessary in order
to handle the complexity of the next generation
of LPWAN conditions.

Trade-off is noted in the area of energy
consumption at the end  devices.
Reconfigurations relying on downlink MAC
commands being more frequently proactively
performed lead to a slight increment of the node
energy consumption by about 3.5%.
Nevertheless, this overhead is compensated by
the energy saving of the lack of recurrent
retransmission due to the packet collisions. This
leads to an overall increase in the energy
efficiency of the system although the increase
in control signaling is small.

Finally, the integration of duty-cycle and
regulatory constraints directly into the learning
and decision-making process ensures full
compliance with regional spectrum regulations.
This constraint-aware design prevents illegal
transmission behavior often produced by
unconstrained ~ optimization  approaches,
reinforcing the practicality and deploy ability of
the proposed framework in real-world
LoRaWAN systems.

5. Conclusion
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The paper introduced a smart, proactive, and
duty-cycle-conscious resource management
framework of the LoRaWAN networks
dedicated to the improvement of the problems
of scalability and reliability of the traditional
reactive mechanisms. The framework employs
the combination of a hybrid GCN-GRU Spatio-
temporal traffic forecasting model and
proactive edge-based control, allowing to
precisely predict the congestion and timely
adjust resources. The experimental outcomes
with real-world traces and high-density
simulations revealed an improvement up to 18
percent of the accuracy of traffic prediction and
30 percent decrease of packet collisions. The
suggested  solution increased network
robustness by up to 21 percent greater portion
of packet delivery in ultra-dense configuration
than typical ADR. In addition, the compliance
of strict regulatory duty-cycle was ensured in
conjunction with ensuring sub-500ms latency
of mission-critical traffic. The validity of edge
deployment was proved by the ability to
implement real-time inference with low
computational costs. Generally, the results
point to the need of Spatio-temporal
intelligence at the network edge in the line of
future scalable system of LoRaWAN. The
suggested framework offers a realistic basis of
credible smart city and industrial IoT
applications that run on dynamic and limited
environments.
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