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Abstract: 

Large scale Internet of Things (IoT) deployments such as Low Power Wide Area Networks 
(LPWANs) and the LoRaWAN have become central to the large-scale Internet of Things (IoT) 
deployment because of their long-range communications and low energy use. Nevertheless, the 
scalability and reliability of LoRaWAN networks is inherently limited by the unslotted ALOHA-
based medium access scheme, fixed resource setup and severe regulatory constraints of duty-
cycle. The difficulties are magnified in crowded and mobile setups like smart cities, where non-
stationary and heavy traffic conditions result in severe packet collisions, high latency and poor 
quality of service (QoS). In this paper, a smart, predictive, and duty-cycle-aware resource 
management framework is proposed to be utilized by LoRaWAN networks that would 
reorganize network operation by transitioning it to reactive control to proactive decision-
making. The proposed solution combines a hybrid Spatio-temporal traffic prediction model 
with Graph Convolutional Networks (GCN) and Gated Recurrent Units (GRU) as well as an 
adaptive resource management module that is placed at the edge of the network. Through 
learning of spatial contours between the entities in the network and time-based traffic dynamics, 
the framework effectively predicts short time congestion and pre-emptively modulates 
spreading factors, channels, and transmission scheduling and maintains the entire regulatory 
adherence. Extensive tests based on actual traffic traces and high-density simulation evidence 
that the suggested framework is far superior to the traditional LoRaWAN Adaptive Data Rate 
(ADR) schemes and the established machine learning model. GNCN-GRU model provides a 
18% decrease in the error of traffic prediction relative to the conventional recurrent models 
with the resource adaptation being proactive which minimizes the packet collisions by up to 30 
percent in the ultra-dense situation. Besides, the framework maintains up to 21% increase in 
the ratio of packet delivery at the 1000 nodes per gateway, and it ensures a sub-500ms latency 
of mission-critical traffic despite a rigid duty-cycle limit. The experiments of edge deployment 
prove the viability of the method, with a latency of inference of less than 42ms and a minimum 
of computational cost. Comprehensively, the findings indicate that edge Spatio-temporal 
intelligence is feasible and applicable to scalable, reliable, and regulation-friendly LoRaWAN 
operation, and the next-generation smart city and industrial IoT applications are feasible. 

Key Words: LoRaWAN; IoT Traffic Prediction; Spatio-Temporal Deep Learning; Edge Intelligence; 
Adaptive Resource Management; Duty-Cycle Aware Scheduling. 
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1. Introduction 

The Internet of Things (IoT) has fundamentally 

redefined how devices can communicate, 

interact, and coordinate the exchange of 

information and data, thus, making it possible 

to achieve pervasive sensing and autonomous 

functioning across a wide-range application 

scope, including smart cities, environmental 

monitoring, precision agriculture, medical 

systems, and automation within an industrial 

environment (Bonilla et al., 2023; Farhad and 

Pyun, 2023). This has been triggered by the 

realization of communication technologies 

which are able to facilitate the huge number of 

devices connected to the Internet of Things 

even as they remain ultra-low in power usage, 

long in communication range as well as 

minimal infrastructural cost. In this regard, Low 

Power Wide Area Networks (LPWANs) have 

appeared as a foundation of the large-scale IoT 

connectivity, as they provide long-range 

wireless connectivity at very low energy 

consumption, thus allowing battery-powered 

devices to operate years continuously without 

maintenance interventions. 

LoRaWAN (Long Range Wide Area Network) 

is one of the LPWAN technologies that have 

received a large amount of scholarly 

publication due to the open standard design, 

flexible deployment architecture, and 

alignment with a wide range of IoT applications 

(Bonilla et al., 2023; Farhad and Pyun, 2023). 

LoRaWAN uses a star-of-stars topology 

whereby lightweight end devices send uplink 

packets straight to one or multiple gateways, 

which, in its turn, routes the information to a 

central network server where it is then 

processed and controlled. The said architectural 

paradigm enables scalable connection over a 

number of kilometres without consuming much 

power at the device level. Therefore, 

LoRaWAN has found wide use in the smart 

metering, environmental sensing, waste 

management, industrial IoT, and urban mobility 

systems both in metropolitan and rural settings 

(Bonilla et al., 2023). 

Although LoRaWAN has its advantages, it also 

has inherent challenges that limit its scalability 

and throughput in addition to Quality of Service 

(QoS) especially in densely deployed 

applications. LoRaWAN employs the unslotted 

pure ALOHA access scheme at Medium Access 

Control (MAC) layer enabling end devices to 

send and transmit without any previous channel 

measurements. This mechanism is intuitively 

straightforward and energy efficient, but 

significantly adds the risk of packet collisions 

with the increase of the density of the devices 

and the volume of traffic (Povalac et al., 2023; 

Bonilla et al., 2023). Also, regulatory duty-

cycle restrictions place strict conditions on 

channel access forcing the devices to delay 

transmissions following the delivery of packets. 

These constraints exacerbate the latency, 

constrain the effective throughput and further 

congestion at bursts in the traffic. These 

consequences are sharply felt in smart cities in 

which heterogeneous devices generate 

intermittent event-based traffic, which form 

highly dynamic and unpredictable network 

behavior (Povalac et al., 2023). 

Among the most obvious disadvantages of the 

current implementations of the LoRaWAN lies 

the fact that they are ad-hoc and fixed in 

configuring parameters of networks 

configuration such as the spreading factor (SF), 

the transmission power and the channel 

allocation. They are generally configured in a 

standard manner or in a reactive manner 

without consideration of altering the traffic 

dynamics or the existing network properties 

(Bonilla et al., 2023). This contributes to the 

reality that the LoRaWAN networks tend to 

lack an effective spectrum allocation, 

retransmission, increased packet loss and 

diminished quality of service. It has been 

discovered that they particularly pose a threat to 

latency-and mission-critical IoT applications 
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i.e., real-time monitoring, emergency response 

systems, and smarter transportation networks. 

To address these impediments, machine 

learning (ML) has become a potential 

technology to facilitate intelligent, predictive, 

and adaptive management of the networks 

within the IoT. Knowing the historical and the 

current tendencies of the networks, the ML 

models will be able to forecast the future of the 

traffic and assist in planning the resources 

proactively (Farhad and Pyun, 2023; Alkhayyal 

and Mostafa, 2025). In particular, sequence-

learning based models, such as Long Short-

Term Memory (LSTM) and Gated Recurrent 

Unit (GRU) neural networks, have been 

demonstrated to be extremely efficient in non-

linear time-series modelling of time-

dependencies as well as taking into account 

long-term time-dependencies. These features 

make them particularly appropriate in traffic 

prediction tasks in the wireless communication 

networks, where the traffic dynamics are 

frequently complex and non-stationary 

(Alkhayyal and Mostafa, 2025). Deep learning 

models have a better ability to model bursty 

traffic patterns and temporal correlations that 

conventional statistical methods like ARIMA 

or SARIMA cannot model, arising in real-life 

applications of IoT deployments. 

More recent developments on edge intelligence 

also increase the feasibility of ML-based 

optimization of LoRaWAN networks. The 

predictive models can now be done in a 

lightweight manner and therefore can be 

deployed directly to a gateway or local edge 

server; thus, the near real-time inference can be 

realized with a smaller latency, forcing less 

backhaul as well as added energy efficiency. 

Using such a combination of traffic forecasts 

and adaptive control, including the duty-cycle-

conscious scheduling, the dynamically 

allocated spreading factor, and reconfigured 

channels, LoRaWAN networks will be able to 

significantly mitigate packet collisions, 

improve the ratio of packet deliveries, and high 

throughput when the network is subject to 

variable conditions (Farhad & Pyun, 2023; 

Alkhayyal and Mostafa, 2025). As an example, 

boosting-based ML has proven to be very 

fruitful in enhancing path loss prediction and 

network performance under a variety of 

environmental factors, thus highlighting the 

potential practical utility of advanced ML-

driven optimization (Alkhayyal and Mostafa, 

2025). 

Despite the fact that previous research has 

focused on the implementation of ML solutions 

to single LoRaWAN optimization issues (e.g. 

energy efficiency optimization, spreading 

factor optimization, and anomaly detection), 

most of the existing solutions to these problems 

consider each of them individually. A literature 

review of LoRaWAN and artificial intelligence 

integration demonstrates that there is an 

increasingly growing interest in the research 

area but indicates that there is a lack of end-to-

end models that combine both traffic prediction 

and proactive resource management with 

deployment limitations (Bonilla et al., 2023; 

Farhad and Pyun, 2023). Specifically, the 

intelligent traffic forecasting and its direct 

integration with adaptive network control 

within the circumstances of duty-cycle 

constraints is not a well-researched area. 

Driven by these gaps, this study suggests an 

intelligent traffic prediction framework by 

machine learning in IoT networks based on 

LoRaWAN. This approach is a combination of 

the latest time-series deep learning models and 

the use of Spatio-temporal feature extraction to 

precisely predict the short-term and medium-

term traffic flow. They are then operationalized 

into adaptive resource management policies 

that implemental the network parameter to 

avoid network congestion, decreased latency, 

and improved network stability. It lays more 

stress on a practical life implementation 

considering the applicability of the edges 

deployed to actual deployment and the 

allocated computational resources and the 

suitable handoff with the already deployed 

LoRaWAN protocol stacks. 
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The main contributions of the work include the 

holistic study of LoRaWAN traffic behavior 

with the help of both real-world and synthetic 

data to determine the salient Spatio-temporal 

factors affecting congestion and performance 

degradation; the creation and testing of ML-

based predictive models that greatly surpass the 

traditional statistical baselines; and the 

demonstration of proactive and prediction-

based resource management strategies that can 

produce a quantifiable improvement in the 

reduction of collisions, packet delivery, and 

QoS. All together, these contributions improve 

the state of the art in the intelligent management 

of LPWANs and help to create the scalable, 

energy-efficient as well as self-optimizing 

infrastructures of smart IoT communication. 

2. Literature Review 

The current rapid growth of the Internet of 

Things (IoT) has required the necessity to make 

a radical shift in the approach to managing the 

network, and replace the rule-based and static 

structure with adaptive, intelligent, and self-

organizing communication structures. Since 

deployments of IoT grow in size and 

heterogeneity, conventional network control 

tools can no longer be reliably, efficiently, or 

provide Quality of Service (QoS). Thus, the 

current literature has been concerned with 

identifying the drawbacks of already available 

Low Power Wide Area Network (LPWAN) 

technologies, specifically LoRaWAN, and 

investigating the possibilities of machine 

learning-inspired approaches to forecasting 

traffic, optimization of resources, and control of 

the network in real-time. The current literature 

falls into four research areas that are closely 

related to each other, namely scalability and 

MAC-layer limitations in LoRaWAN, use of 

deep learning to predict traffic, ML-based 

resource optimization strategies, and the new 

paradigm of edge intelligence. 

The basic issue with LoRaWAN networks is the 

architecture of its Medium Access Control 

(MAC) layer based on unslotted Pure ALOHA 

access scheme. Although this technique reduces 

the complexity of the devices used and their 

power use, it greatly affects scalability. The 

likelihood of packet collisions rises at a high 

rate with the degree of device density with a 

resultant sharp decline in Packet Delivery Ratio 

(PDR). Povalac et al. (2023) work with 

demonstrating that, by dense deployments, the 

probability of collision grows non-linearly, and 

the capture effect, which makes the stronger 

communications mutable weaker messages 

concurrently, only enhance unfairness and 

packet loss even further. Such effects are 

amplified especially in urban IoT cases where 

heterogeneous devices cause asynchronous and 

bursty traffic. 

The assumption of perfect orthogonality is not 

true in LoRaWAN though the spreading factors 

(SFs) are quasi-orthogonal used to reduce 

interference; this does not occur when the 

traffic load is high. Bonilla et al. (2023) disclose 

that inter-SF interference is severe when there 

is an occupancy in channels, compromising the 

efficacy of SF diversity, and leads to a greater 

amount of packet corruption. Besides 

interference issues, regulatory duty-cycle 

constraints provide rigid constraints concerning 

the use of the channels. In band like the EU868 

band, 100 percentage restriction on duty-cycle 

is a severe constraint to transmission 

opportunities. As demonstrated by Farhad and 

Pyun (2023), the duty-cycle cool-down times in 

traffic bursts are not considered by the static 

Adaptive Data Rate (ADR) mechanisms, which 

result in the overflow of the buffers, the 

excessive delays in the queue, and the high 

latency rates. All these constraints underscore 

the inefficiency of the traditional, reactive 

configuration approaches in the dynamic IoT 

settings. 

In order to mitigate the random nature of the 

ALOHA-based access, recent works have 

considered the concept of time-series traffic 

forecasting as a way of predicting congestion 

and proactively controlling the network. The 

conventional statistical models, e.g. ARIMA, 

are becoming inappropriate to IoT traffic 



JOURNAL OF EMERGING TECHNOLOGY AND DIGITAL TRANSFORMATION 

ONLINE ISSN 

3006-9726 

PRINT ISSN 

VOLUME 5 ISSUE 01 (2026) 3006-9718 

5 

https://journalofemergingtechnologyanddigitaltransformation.com Ahmad Khan * 

 

 

because it is based on assumptions of linearity 

and stationarity. On the contrary, deep learning 

models have performed better to model non-

linear and non-stationary dynamics in traffic. 

Alkhayyal and Mostafa (2025) offer an 

extensive comparison of the Recurrent Neural 

Network (RNN) architectures presenting that 

both Long Short-term Memory (LSTM) and 

Gated Recurrent Unit (GRU) are more effective 

than classical approaches in their ability to 

capture long-term temporal dependencies. The 

LSTM networks are especially efficient to 

detect the periodic traffic patterns typical of 

smart metering and environmental sensing 

whereas GRU ones provide a similar level of 

accuracy with a lower level of computational 

complexity, making them appealing to latency-

sensitive tasks. 

In addition to the purely temporal modelling, 

the recent literature focuses on the significance 

of describing spatial correlations between IoT 

devices. Computation Traffic patterns in 

LoRaWAN Network are not only time 

dependent but also space dependent due to 

clustering of devices, distribution of load on the 

gateway, and propagation environment. The 

authors present hybrid Spatio-temporal 

architectures that represent LoRaWAN 

deployments as graphs and apply Graph 

Convolutional Networks (GCNs) to extract 

spatial features after which they are fed into the 

LSTM networks, which later predict the 

temporal features (Dai et al., 2025). These 

methods prove to be more accurate in 

forecasting especially in thick networks where 

the issue of spatial congestion is eminent. 

Machine learning has been used to build upon 

predictive capabilities, and has previously been 

used to allow proactive resource optimization in 

LoRaWAN networks. Instead of depending on 

the heuristically-based ADR schemes, ML-

based approaches strive to adjust the parameters 

of a network dynamically, depending on the 

forecasted conditions. Nisar et al. (2025) 

suggest an ML-based framework of adaptive 

spreading factor and transmission power 

assignment that makes use of the predicted 

Signal-to-Noise Ratio (SNR) trends. Their 

findings reveal that their results demonstrate an 

energy saving of up to 25 percent over the 

standard LoRaWAN setup, and at the same time 

the reliability is also increased. In cases when 

the training data is sparse, ensemble and 

boosting methods have been of interest. 

According to Farhad and Pyun (2023), by 

increasing algorithms like XGBoost and 

Light_GBM, the accuracy in link-quality and 

path-loss prediction are high, which makes 

them a successful trade-off between the 

efficiency of a given algorithm and the 

predictability in environmental monitoring 

application. 

The increasing interest in edge computing has 

contributed to the practicality of intelligent 

LoRaWAN optimization even more. Cloud-

based management is centrally located, which 

causes latency and backhaul overheads that do 

not suit IoT services that need timeliness. Edge 

intelligence is a solution to such issues because 

it allows inference and control to be brought 

nearer to the data source. Alkhayyal (2025) 

examines the idea of lightweight MLs installed 

on LoRaWAN gateways, showing significant 

trade-offs to be parameter pruning and 

quantization of model, which avoidional waste 

computational and memory consumption and 

predict accurately. Gateway level inference 

leads to the near real time reconfiguration of 

network configurations as it minimizes 

response time to mission critical applications 

like emergencies alerts and industrial 

surveillance. 

There is a new body of research which is 

applying traffic prediction in conjunction with 

enhanced scheduling logic taking duty-cycle 

constraints into explicit consideration. Instead 

of responding to collisions once they have 

occurred, gateways have the opportunity to use 

anticipated levels of congestion to pre-compute 

transmission windows and actively command 

end devices to switch channels or spreading 

factors. Even though there is some early 
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evidence of the possible effectiveness of such 

predictive scheduling, this field has not been 

investigated extensively, especially in real-

world implementation practice where both 

regulatory limitations and traffic variability 

exist. 

Even though there has been a considerable 

improvement in these areas, a gap in research is 

still present. The other literature tends to treat 

the issues of predicting traffic and optimizing 

resources separately, leading to disjointed 

solutions which do not reflect the inter-

relationships between predictive quality, 

regulatory complexity and operational viability. 

In addition, most of the suggested ML methods 

are also tested on synthetic data, which is not 

entirely representative of bursty, irregular and 

context-dependent real urban IoT traffic. 

Avoidable gaps exist in end to end, edge 

deployable, frameworks, which combine 

Spatio-temporal traffic prediction and 

proactive, duty-cycle, conscious resource 

management in realistic operating scenarios. 

This gap is necessary in order to achieve 

scalable, reliable, and intelligent LoRaWAN 

networks that can be used to support next-

generation IoT applications. 

Table 1: Comparative Analysis of LoRaWAN Resource Management Approaches 

Feature Statistical Models 

(ARIMA) 

Standard 

ADR 

ML-Based Proactive 

ADR 

Proposed Framework 

Traffic 

Handling 

Linear only Reactive Non-linear/Predictive Spatio-

Temporal/Adaptive 

Latency High Medium Low Ultra-Low (Edge-

based) 

Scalability Low Low Moderate High (Intelligent) 

Duty-Cycle 

Aware 

No Yes (Static) Often Neglected Yes (Direct Integration) 

 

3. Methodology 

The research provides a predictive and adaptive 

traffic-aware resource management in the 

LoRaWAN networks. The methodology has 

been designed in such a way that it integrates 

traffic forecasting, based on machine learning, 

into the realities of deployment, such as 

regulatory duty-cycle constraints, 

computational cost and usability in real time. 

The suggested solution is based on a systematic 

pipeline that includes the data collection, 

Spatio-temporal features modelling, predictive 

inference at the network end and proactive 

resource adaptation. 

System Architecture 

The recommended framework uses a 

distributed model based on the intelligence 

architecture which decouples model training 

and inference to guarantee scalability and 

deployment. Offline model training and 

hyperparameter optimization are done off the 

centralized server and based on historical traffic 

traces. This is a stage that allows a large-scale 

exploration of model configurations without 

exerting a high computational constraint on the 

network infrastructure. After the training, the 

prediction model is reduced in size and 

implemented on the level at the LoRaWAN 

gateway. This is carried out by inference at the 

gateway that can to estimate traffic near real 

time and control decisions on the network 

without depending on cloud-based processing. 

This edge-based design minimizes the control-

loop latency and backhaul traffic and allows 

gateways to operate as smart controllers which 

can react immediately to the changing network 

conditions. 
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Data Mining and Characterizing Data 

A hybrid data strategy is used to guarantee the 

ability to generalize to a variety of operational 

conditions. Traffic traces of the urban-scale 

LoRaWAN system reported by Povalac et al. 

(2023) are obtained in the forms of real-world 

traces, and they include realistic propagation 

scenario, interpreter interaction and 

heterogeneity of the traffic. In order to 

supplement such data, artificial traffic is created 

with the help of the NS -3 LoRaWAN 

simulation module, which permits to evaluate it 

controlled in the framework of high-density 

deployment and burst traffic events. Raw 

metadata on packets and protocol headers are 

translated into structural representations of 

features. Temporal characteristics consist of 

inter-arrives times of packets, moving averages 

of traffic and periodically recorded indicators of 

diurnal and weekly cycles. The Signal-to-Noise 

Ratio (SNR), Received Signal Strength 

Indicator (RSSI), frequency error is also 

included in the feature of link-quality in order 

to describe the channel conditions. Moreover, 

the network-level indicators, i.e., spreading 

factor occupancy and sub-band duty-cycle 

usage are derived so that the situational 

awareness of network load and the regulatory 

constraints can be achieved. This multi 

dimension feature space allows the predictive 

model to acquire elaborate interactions among 

the dynamics of traffic and resource 

availability. 

Spatio-temporal Traffic Forecasting Model. 

The LoRaWAN traffic dynamics depend on 

both the dynamics of time and spatial 

correlations that are caused by the overlapping 

of gateway coverage and node dispersion. The 

proposed predictive engine uses a hybrid 

Spatio-temporal learning architecture in order 

to capture these dependencies. A Graph 

Convolutional Network (GCN) is used to model 

spatial relationships with network entities being 

modelled as nodes and scenes being connected 

with each other and shared channels through a 

graph edge. The GCN acquires the spatial 

congestion patterns and propagation of 

interface between neighbouring gateways 

which reduces hidden-node effects as well as 

localized overload situations. A Gated 

Recurrent Unit (GRU) Network then takes the 

features that were spatially encoded and 

attempts to capture any temporal dependency. 

GRU architecture is chosen because the 

architecture has a good balance between 

expressive power and computation efficiency. 

It can store long-term dependencies, like traffic 

cycles, at a lower number of parameters than 

Long Short-term Memory (LSTM) networks 

can store. This design will provide the ability to 

correctly make predictions and at the same time 

be capable of running on hardware with limited 

resources of a gateway. 

Pre-emptive Reactive Resource 

Management 

The Spatio-temporal model provides traffic 

forecasts which are transformed into proactive 

network responses in an Adaptive Resource 

Management (ARM) module. The ARM 

module is predict-then-act based, which allows 

performing preventive mitigation of the 

congestion before packet collisions and 

undesired delays. As the model predicts the 

spread load of the particular spreading factors 

or channels, the ARM module will compute 

different settings and provide downlink MAC 

commands to dis-assign, and reassign feasible 

devices, to less crowded resources. This is 

proactive reconfiguration that redistribution of 

traffic load and minimizing the probability of 

collision. Precise message tier limiting 

regulatory constraints are formally reflected in 

the logic of adaptation. A credit-based system 

of tracking the use of the duty-cycle is used to 

continually track the sub-band usage in 

accordance to regional rules, e.g. the 1 percent 

duty-cycle limit within the EU868 band. In case 

the predicted demand is greater than the 

allowable transmission capacity, the scheduler 

uses a priority-conscious deferral mechanism. 

The priorities are given to time-sensitive traffic 

and the non-essential periodical transmissions 
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are postponed to ensure compliance and quality 

of services. 

Implementation and Edge Deployment 

Python Java Perl .NET Java Lovelace 

The framework suggested is executed with the 

help of PyTorch to develop the model and train 

it. To deploy a trained model, trained models 

are converted to lightweight inference formats 

with the TensorFlow Lite microcontrollers. The 

target deployment devices are gateway-like 

platforms, which are Raspberry-based 

gateways and gateways based on industrial 

LoRaWAN foundations that have an embedded 

accelerator. Parameters pruning and 

quantization are used as model optimization 

tools to make sure that inference latency is 

lower than standard LoRaWAN packet inter-

arrival times. This ensures that predictions and 

related network modifications can be pursued in 

near real time without the need to interfere with 

the regular operations of the gateway. 

Evaluation Metrics 

The work of the proposed methodology is 

measured with the help of both predictive and 

network-based measurements. The standard 

time-series error measures are used to measure 

the accuracy of prediction. The parameters used 

to measure the network performance are Packet 

Delivery Ratio (PDR), collision probability, 

throughput, and end-to-end latency. The 

analysis of energy efficiency is also done to 

make sure that extra signaling of control does 

not contribute a lot of extra power at end 

devices. Combined, these measures give a 

holistic evaluation of the framework in 

enhancing the scalability, reliability and 

efficiency of operation of Lora WAN. 

4. Results and Discussion 

Traffic Prediction Accuracy Analysis 

The comparison of the accuracy of four models, 

namely ARIMA, LSTM, Standard RNN and the 

proposed GCN-GRU framework, in predicting 

traffic in terms of the Mean Absolute Error 

(MAE) is shown in figure 1. Reducing values 

of MAE denote enhanced prediction 

performance. The original ARIMA model 

demonstrates the largest MAE ([?]0.14), which 

indicates its weakness in the ability to model the 

very dynamic and non-stationary traffic 

patterns that are a characteristic of the 

LoRaWAN-based IoT networks. Although 

ARIMA is useful in linear and stationary time 

series, it does not achieve the characteristic of 

abrupt changes in traffic and burst 

transmissions, which are prevalent during 

intensive deployment of IoT systems. 

Temporal models based on deep learning show 

significant increases. The LSTM model 

minimizes the MAE to about 0.118, and it is 

advantageous since the model has a gated 

architecture that allows it to learn long-term 

temporal dependencies. Nevertheless, it is still 

limited by the lack of spatial awareness. In the 

same manner, the Standard RNN results in an 

MAE of approximately 0.125 and has a weak 

capability to capture intricate temporal 

correlations along with a vanishing gradient 

problem. 

The GCN-GRU model that has been proposed 

has the lowest MAE ([?]0.102), which is an 

error reduction of almost 18% over the 

Standard RNN. It is largely due to the fact that 

this has been enhanced by the addition of Graph 

Convolutional Networks (GCN) which can 

capture spatial correlations between end 

devices and gateways of geographically 

distributed nature, and the effective time 

modeling of the GRU. Through the mutual 

relationship learning of the Spatio-temporal 

relationships, the proposed structure can well 

predict the localized traffic peaks and jams. 

Overall, the results confirm that incorporating 

spatial topology into traffic prediction 

significantly enhances forecasting accuracy, 

making the GCN-GRU model particularly 

suitable for proactive and adaptive resource 

management in dense LoRaWAN 

environments. 
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Figure 1: Traffic Prediction Accuracy Comparison 

Collisions and Impact on Packet Delivery 

Ratio (PDR)  

Collision Mitigation Performance 

The reduction in the collision experienced by 

the proposed proactive spreading factor (SF) 

scaling with different network densities is 

shown in Figure 2. In medium-density cases, 

the packet collisions are minimized by about 22 

per cent, which means success in countering 

early congestion. The more the network 

density, the greater the benefits, and there can 

be 26% and 30% collisions reduction in high-

density and ultra-dense deployment, 

respectively. 

Such benefits can be explained by the fact that 

the framework can transitively redistribute 

traffic between the SFs and channels with less 

congestion into the predicted traffic patterns. 

On the whole, the findings indicate that 

predictive SF scaling is significantly better than 

the traditional reactive strategies, especially 

when the LoRaWAN is dense, and contributes 

to the enhancement of network 

reliability and spectrum use.  

Figure 2: Traffic Prediction Accuracy Comparison 
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The information presented in the Figure 3 

indicates that there is a definite performance 

difference between the Proposed Framework 

and the Standard ADR when the network 

congestion increases. The two approaches 

perform excellently at low density, 100 

nodes/gateway where the proposed framework 

ensures an almost perfect Packet Delivery Ratio 

(PDR) of around 98.5% whereas the standard 

stands at 96. At density of the device, however, 

the Standard ADR follows a non-linear fall and 

reduces to a PDR of about 58.5% at 1000 nodes. 

By comparison, the Proposed Framework is a 

lot more resilient; even at 1000 nodes density it 

maintains a PDR of 80, which is a huge 21.5% 

increase over the baseline. This indicates that 

the suggested system is probably using a better 

mitigation of interferences or more effective 

allocation of resources which makes it much 

more adapted to high-density IoT 

implementation when reliable  

communication is important.  

Figure 3: Traffic Prediction Accuracy Comparison 

Duty-Cycle Compliance and Priority 

Handling 

The experimental outcomes of priority-

sensitive latency show the capacity of the 

framework to uphold Quality of Service (QoS) 

on mission-critical data with the limitation of 

constricting duty-cycle requirements. The 

Emergency traffic class shows the highest 

performance with the latency of about 425ms 

which is well under the QoS requirement of 

500ms. The critical alarms are also managed 

successfully, and they all reach the highest 

point right at 500ms threshold that validates the 

effectiveness of the system in prioritizing 

urgent transmissions. This prioritization 

however comes at a heavy price to non-

essential data; Routine Telemetry has an 

astronomical increase in latency and it shoots 

up to more than 4200ms. Such an almost 

tenfold variation in the delivery time gives a 

clear understanding of the logic behind the 

framework: the logic is to buffer or delay low-

priority packets so that high-priority 

Emergency and Alarm signals could get the 

duty-cycle "cooldown" periods cleared out first. 
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Figure 4: Traffic Prediction Accuracy Comparison 

Edge Implementation Performance 

The implementation of the Edge Intelligence 

was proved to be possible on Raspberry Pi-

based gateways. 

Inference Latency: Model pruning and 

quantization helped to record the average 

inference time at 42ms. This falls comfortably 

below the standard LoRaWAN uplink range, 

achieving previously established results that it 

is possible to compute a new resource scheme 

and command a downlink in no more than a 

single transmission cycle on the gateway. 

Computational Overhead: The TensorFlow Lite 

model did not exceed 15 percent of the 

available RAM of the gateway, meaning that 

the main packet-forwarding capabilities were 

not affected. 

Discussion 

The given results prove the essential change in 

the operation of the low-power wide-area 

network (LPWAN) management towards the 

reactive mode to the predictive and 

intelligence-driven control. Traditional 

LoRaWAN systems are myopic in nature 

because the resource allocation decisions are 

only made with regard to the past or real-time 

network status. Conversely, the suggested 

framework enables the gateway to have a 

future-oriented functionality through the use of 

Spatio-temporal traffic prediction which allows 

proactive congestion mitigation to be done 

before the performance decays. 

Among other things, there is a marked decrease 

in the capture effect, which is a major 

impairment in dense LoRaWAN networks in 

which strong transmissions effectively crowd 

the space of the weaker ones. The GCN-GRU 

model is successful in spreading the signal 

arrivals in time and frequency domains by 

modeling network topology as a graph and 

assigning various spreading factors and 

channels proactively to geographically 

clustered devices. This strategic dispersion 

minimizes destructive interference resulting in 

reduction in the collision rates and significant 

enhancement of the ratio of packet delivery 

especially in high and ultra-dense traffic 

environments. 

The framework also exhibits high scalability 

effects where it is capable of supporting almost 

twice the number of devices per square 

kilometre than typical LoRaWAN systems and 

still attain a tolerable quality-of-service. This 

scalability is essential to smart city and 

industrial IoT applications, the traffic of which 

is very dynamic and non-stationary. The fact 

that the learning model deployed successfully 
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at the network edge is a further confirmation 

that the idea of deep learning-based intelligence 

is not only possible but also necessary in order 

to handle the complexity of the next generation 

of LPWAN conditions. 

Trade-off is noted in the area of energy 

consumption at the end devices. 

Reconfigurations relying on downlink MAC 

commands being more frequently proactively 

performed lead to a slight increment of the node 

energy consumption by about 3.5%. 

Nevertheless, this overhead is compensated by 

the energy saving of the lack of recurrent 

retransmission due to the packet collisions. This 

leads to an overall increase in the energy 

efficiency of the system although the increase 

in control signaling is small. 

Finally, the integration of duty-cycle and 

regulatory constraints directly into the learning 

and decision-making process ensures full 

compliance with regional spectrum regulations. 

This constraint-aware design prevents illegal 

transmission behavior often produced by 

unconstrained optimization approaches, 

reinforcing the practicality and deploy ability of 

the proposed framework in real-world 

LoRaWAN systems. 

5. Conclusion 

The paper introduced a smart, proactive, and 

duty-cycle-conscious resource management 

framework of the LoRaWAN networks 

dedicated to the improvement of the problems 

of scalability and reliability of the traditional 

reactive mechanisms. The framework employs 

the combination of a hybrid GCN-GRU Spatio-

temporal traffic forecasting model and 

proactive edge-based control, allowing to 

precisely predict the congestion and timely 

adjust resources. The experimental outcomes 

with real-world traces and high-density 

simulations revealed an improvement up to 18 

percent of the accuracy of traffic prediction and 

30 percent decrease of packet collisions. The 

suggested solution increased network 

robustness by up to 21 percent greater portion 

of packet delivery in ultra-dense configuration 

than typical ADR. In addition, the compliance 

of strict regulatory duty-cycle was ensured in 

conjunction with ensuring sub-500ms latency 

of mission-critical traffic. The validity of edge 

deployment was proved by the ability to 

implement real-time inference with low 

computational costs. Generally, the results 

point to the need of Spatio-temporal 

intelligence at the network edge in the line of 

future scalable system of LoRaWAN. The 

suggested framework offers a realistic basis of 

credible smart city and industrial IoT 

applications that run on dynamic and limited 

environments. 
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