
https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Journal of Emerging Technology and Digital Transformation
Online ISSN

3006-9726
Print ISSN

3006-9718 Volume . 4 Issue . 2 (2025)

21

A COMPARATIVE ANALYSIS OF FUNDAMENTAL CONCEPTS
OF OPERATING SYSTEM

Asna Riaz
Department of Computer Science, University of Southern Punjab Multan
asnariaz6@gmail.com
Zahida Manzoor
Department of Computer Science, University of Southern Punjab Multan
Zahidamanzoor67@gmail.com
Kanwal Saleem
Department of Computer Science, University of Southern Punjab Multan
kanwalsaleem55@gmail.com
Muhammad Azam
Department of Computer Science, University of Southern Punjab Multan
Crossponding Authormuhammadazam.lashari@gmail.com
Ammad Hussain
Department of Computer Science, University of Southern Punjab Multan
ammadhussain709@gmail.com

https://doi.org/10.5281/zenodo.16312122
RECEIVED
08 June 2025

ACCEPTED
15 June 2025

PUBLISHED
22 July 2025

ABSTRACT
This paper provides a comparative review of various fundamental cores of operating system, including Time
Sharing, Multitasking, Kernel mode, User mode, Threads, File systems, Virtual memory, Paging, Paging and
Swapping, Page hit, Page miss. The review synthesizes findings from 40 research and review papers,
examining these fundamental core’s performance across different applications, methodologies, and optimization
tasks. The discussion highlights key findings, identifies research gaps, and suggests future research.
Keywords – Time Sharing, Multitasking, Kernel mode, User mode, Threads, File systems, Virtual memory,
Paging, Paging and Swapping, Page hit, Page miss.

mailto:muhammadazam.lashari@gmail.com
mailto:ammadhussain709@gmail.com
https://doi.org/10.5281/zenodo.16312122


https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Journal of Emerging Technology and Digital Transformation
Online ISSN

3006-9726
Print ISSN

3006-9718 Volume . 4 Issue . 2 (2025)

22

Introduction
Operating systems (OSs) form the foundation

for computing infrastructure, governing

hardware interaction, resource allocation,

and execution environments. In recent

decades, OS research has evolved

substantially, adapting to changes in

computing paradigms—from monolithic

kernels to microservices, and from single-

core desktops to multi-core cloud and edge

environments [1][2][27]. As systems

demand greater speed, energy efficiency, and

scalability, OSs are expected to perform with

minimal latency, maximum throughput, and

robust fault tolerance [3][6][14]. This

transformation necessitates novel OS designs

and methodologies to support increasingly

heterogeneous workloads, such as those in

IoT, high-performance computing (HPC),

and real-time systems [4][15][20].

Many studies in the compiled collection focus

on architectural innovations, memory

management strategies, and scheduling

techniques. Designs like exokernels and

object-oriented OSs (e.g., Choices) offer

modular, flexible systems [5][27][30],

while approaches like MVAS in NUMA

systems enhance memory locality and reduce

latency [3]. Research also explores

specialized OSs like OSv for cloud VMs [1]

and SYSFLOW for IoT [14], tailored for

single-app workloads or constrained

environments. These systems trade

traditional abstractions for performance

gains and highlight how customized OS

designs outperform general-purpose kernels

under specific conditions.

Scheduling and concurrency management

remain central concerns, particularly in real-

time and multi-threaded environments

[15][16][33][34]. Several papers examine

traditional and hybrid scheduling

algorithms—like Round Robin, Priority-

Based Scheduling, and Earliest Deadline

First (EDF)—in both educational OSs (e.g.,

xv6) and production environments [18].

These studies often demonstrate that while

simpler algorithms offer predictability, they

lack responsiveness under heavy or mixed

loads. Hybrid and adaptive models are shown

to be more efficient in real-time and

multicore contexts [33][35].

Memory management is another recurring

theme, especially in virtualized or

containerized systems [6][25][26].

Techniques like ballooning, deduplication,

and hypervisor-level swapping (e.g., in



https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Journal of Emerging Technology and Digital Transformation
Online ISSN

3006-9726
Print ISSN

3006-9718 Volume . 4 Issue . 2 (2025)

23

VMware ESX Server) are shown to

significantly reduce memory overhead

without harming performance [6]. Some

papers highlight how limited memory

insights in guest OSs

restrict dynamic adaptation, suggesting that

future OSs should integrate cooperative

memory policies and use machine learning

for predictive resource allocation [4][17].

Security and reliability also feature

prominently. Behavior-based malware

detection systems, such as those using

ensemble classifiers on system call sequences,

achieve high accuracy and low false-positive

rates [13][19], suggesting a viable path for

real-time threat detection. Likewise, OS-level

enhancements for fault tolerance—like

redundant core architectures or replicated

thread execution on FPGAs—demonstrate

the feasibility of deterministic systems for

aerospace and automotive use, albeit with

high resource overhead [21].

Despite progress, the reviewed studies

collectively indicate that many OS designs

and mechanisms remain untested in real-

world or heterogeneous environments

[2][8][10]. Simulated evaluations and

concept-only models dominate the literature,

with empirical validations often missing or

limited to narrow scenarios. This gap

presents rich opportunities for

interdisciplinary exploration—especially

where hardware-software co-design, AI-

based scheduling, and scalable system

modeling intersect [4][17][33].

LITERATURE REVIEW

Forty research papers have been reviewed to

evaluate the performance of fundamental

cores of operating system. This paper offers a

comparative overview of modern operating

systems, namely Windows, Linux, and

macOS, based on these core principles,

aiming to highlight differences in

implementation, performance, and design

philosophy.

Key Concepts

Time Sharing

Time sharing is a method that allows

multiple users or processes to use a computer

system at the same time by quickly switching

between them. The system gives each

process a small slice of processor time,

creating the illusion that they are running

simultaneously.[36][37]

Multitasking



https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Journal of Emerging Technology and Digital Transformation
Online ISSN

3006-9726
Print ISSN

3006-9718 Volume . 4 Issue . 2 (2025)

24

Multitasking refers to the ability of an

operating system to handle multiple tasks or

applications at once. It ensures that different

programs can run in parallel by rapidly

switching the CPU among them, so the

system remains responsive and efficient.

[7][10][36]

Kernel Mode

Kernel mode is a privileged operating mode

where the operating system has complete

access to all system resources and hardware.

In this mode, critical tasks like managing

memory, handling devices, and controlling

processes are performed. [5][17][28]

User Mode

User mode is the restricted mode where

normal applications run. Programs in user

mode can’t directly interact with hardware or

critical system components; instead, they

must go through the operating system for

those operations, which helps protect the

system from crashes and security issues.

[1][5][22]

Threads

A thread is the smallest unit of execution

within a process. Multiple threads can run

inside a single program, sharing memory but

executing independently, which improves

efficiency and allows tasks to be performed

simultaneously.[22][31][32]

File Systems

A file system organizes and manages how

data is stored and retrieved on storage

devices. It defines the structure for files,

folders, permissions, and metadata so that the

operating system and users can locate and

access data efficiently.[7][24][40]

Virtual Memory

Virtual memory is a technique that allows a

computer to compensate for limited physical

RAM by using disk space as additional

memory. It gives the illusion of having more

memory available, enabling large applications

to run smoothly.[3][6][25]

Paging and Swapping

Paging and swapping are strategies for

managing memory when space runs low.

While paging moves parts of programs

(pages) in and out of RAM, swapping moves

entire processes to and from disk storage to

free up space for other active

tasks.[6][26][37]



https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Journal of Emerging Technology and Digital Transformation
Online ISSN

3006-9726
Print ISSN

3006-9718 Volume . 4 Issue . 2 (2025)

25

TABLE I

LITERATURE REVIEW

Sr. Authors Methods Dataset Results Limitations Research Gap Performance

Metrics

1 Avi

Kivity, et

al.

OS

architecture

design,

benchmarki

ng

SPECjvm200

8, Netperf,

Memcached

25%

throughput

gain, 47%

latency

drop

Not for

multi- app

VMs, limited

POSIX

support

Extend

POSIX

coverage,

support multi-

apps

Throughput,

latency, boot

time

2 Mohamma

d

Marufuzza

man, et al.

Comparativ

e literature

review

N/A Explains

OS design

trade-offs

No

benchmarks,

conceptual

only

Real-time

metrics, IoT-

specific OS

models

Qualitative

only

3 Di

Gennaro,

Pellegrini,

Quaglia

Linux

kernel

module,

memory

access

tracking

HPC

simulation

workloads

Improved

memory

locality,

reduced

latency

Kernel

changes

required,

workload

sensitivity

Portability to

other OSes,

user- space

libraries

Latency,

page locality,

fault tracking

accuracy

4 A.S.

Thyagatur

u, et al.

Literature

review,

taxonomy

N/A Identifies

tech trade-

offs and

bottlenecks

No unified

evaluation

framework

Hybrid I/O,

NUMA-aware

memory,

container

security

Boot time,

I/O latency

(qualitative)



https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Journal of Emerging Technology and Digital Transformation
Online ISSN

3006-9726
Print ISSN

3006-9718 Volume . 4 Issue . 2 (2025)

26

5 Russo,

Johnston,

Campbell

Object-

oriented OS

design

N/A Demonstrat

ed modular,

reusable

component

s

No

benchmarks

provided

Extend model

to I/O,

networking,

and

filesystems

Qualitative

(modularity,

reuse)

6 Carl A.

Waldspurg

er

System

implementat

ion,

benchmark

testing

dbench

(Linux

I/O)

<5%

overhead

with

overcommi

t, efficient

sharing

Requires

balloon

driver, OS

cooperation

Dynamic

adaptation,

hardware

integration

MB/s

throughput,

memory

footprint

7 Shashank

Prabhakar

VMCF-

based file

system

implementat

ion

N/A Enabled

multitaskin

g,

concurrent

access

VM/CMS-

specific, no

network

support

Extend to

distributed

FS,

replication

Qualitative

concurrency

handling

8 Christian

Bendele

Conceptual

architecture,

QEMU

simulation

Simulated

workloads

via QEMU

Validates

decentraliz

ed OS

design

Prototype

only, no real

hardware

Real-world

deployment,

memory

subsystem

integration

Lock latency,

scheduling

(simulated)

9 Shashank

Prabhakar

VMCF,

command

parsing,

concurrency

primitives

N/A Same as

Paper 7

Same as

Paper 7

Add modern

networking

and file

versioning

Responsiveness

(qualitative)



https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Journal of Emerging Technology and Digital Transformation
Online ISSN

3006-9726
Print ISSN

3006-9718 Volume . 4 Issue . 2 (2025)

27

10 Christian

Bendele

OS

modeling,

prototype

extension

QEMU

simulation

Validates

scalability

concepts

No

memory/I/O

integration

Full stack

development,

legacy app

support

Message

latency, core

scheduler

11 Shashank

Prabhakar

Same as

Papers 7 &

9

N/A Same as

Papers 7 &

9

Same as

Papers 7 & 9

Fault

tolerance,

distributed

replication

Qualitative

concurrency

models

12 Christian

Bendele

Same as

Papers 8 &

10

Simulation-

based

metrics

Demonstrat

ed

messaging

and

modular

scaling

Prototype

only, lacks

memory

modeling

Integration of

memory/I/O,

app

compatibility

Locking,

messaging

latency

(simulated)



https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Journal of Emerging Technology and Digital Transformation
Online ISSN

3006-9726
Print ISSN

3006-9718 Volume . 4 Issue . 2 (2025)

28

13 Bingyan

Xu, et al.

Generative

Adversarial

Networks

(GANs) to

analyze I/O

Request

Packet

(IRP)

operations

system logs

capturing

normal and

malicious

I/O

operations,

significant

improveme

nts over

traditional

ransomwar

e detection

methods.

the model's

performance

in detecting

various

ransomware

variants may

need further

validation

Future work

could focus on

optimizing the

model for real-

time

ransomware

detection,

improving its

scalability

The model

shows high

accuracy in

distinguishing

between

benign and

malicious

behaviors.

14 Jun Lu,

Zhenya

Ma,

Yinggang

Gao, Ju

Ren,

Yaoxue

Zhang

Optimized

network IO

path, action-

based

prefetching,

kernel-level

disk IO

interception,

multithreadi

ng

(JVM,

Python,

GCC,

OpenSSL)

on

Raspberry

Pi 4B and

Dell R730.

Latency

reduced by

45.1%-

75.8% vs

Linux; up

to 67.7%

vs NFS;

power use

up to 6.7%

higher but

more

energy-

efficient

overall.

Relies on

historical

access

patterns;

limited cache

capacity on

server; does

not address

large-scale

concurrency.

Integration

with AI

models,

adaptation to

distributed

systems,

scalable

predictive

caching

mechanisms.

Performance

evaluated

using latency,

page

fetch times,

power usage;

no direct

"accuracy"

metric.



https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Journal of Emerging Technology and Digital Transformation
Online ISSN

3006-9726
Print ISSN

3006-9718 Volume . 4 Issue . 2 (2025)

29

15

Gulistan

Ahmead

Ismael1,

et al.

non-

preemptive,

preemptive,

round-robin

RTOS

systems

and

scheduling

approaches

Real-Time

Operating

Systems

are vital

for critical

application

s. Hard

RTOS

dominates

the

reviewed

literature.

Lack of

comparative

benchmarks

for the

scheduling

algorithms

across

different

systems.

Future work

should include

experimental

validation of

reviewed

algorithms,

real- time

simulation

environments,

Discussed

conceptually

(e.g., meeting

deadlines, task

prioritization).



https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Journal of Emerging Technology and Digital Transformation
Online ISSN

3006-9726
Print ISSN

3006-9718 Volume . 4 Issue . 2 (2025)

30

16 M.

Shakor, et

al.

Comparativ

e analysis of

CPU

scheduling

algorithms

in RTOS

Theoretical

models and

performance

metrics

Identified

EDF and

RMS as

optimal for

hard

RTOS

Complex

algorithms

may

introduce

overhead

Exploration of

hybrid

scheduling

approaches

CPU

utilization,

throughput,

turnaround

time, waiting

time, response

time,

deadline miss

ratio, jitter

17 Hayfaa

Subhi

Malallah1

*, et al.

TF-IDF,

virtualizatio

n, ML,

kernel

patching

74 cited

papers

covering

kernel-level

experiments,

real-time

performance

evaluations,

intrusion

detection

mechanisms,

and system

call

behaviors

under stress

Linux and

Android

are the

most

studied;

kernel-

level tasks

like

scheduling,

memory,

and

security

are most

impacted;

ML and

virtualizati

on

improve

robustness

Lack of

unified

evaluation

metrics,

inconsistent

tools across

platforms,

limited

scalability of

existing

models

Need for

lightweight,

adaptive, and

secure kernel

solutions for

modern

environments

like IoT,

cloud, and

edge

computing

Accuracy and

efficiency in

kernel tasks

like memory

management,

scheduling,

and intrusion

detection



https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Journal of Emerging Technology and Digital Transformation
Online ISSN

3006-9726
Print ISSN

3006-9718 Volume . 4 Issue . 2 (2025)

31

18 Madan H.

T., et al.

Kernel-level

modification

s and

implementat

ion of

scheduling

algorithms

(RR, FCFS,

PBS) in xv6

OS;

developmen

t of strace,

procdump,

and a

custom

RISC-V

bootloader

10 processes

(5 I/O-

bound,

5 CPU-

bound)

executed in

a QEMU-

based

single-core

RISC-V

environment

with 256MB

RAM

FCFS

achieved

the lowest

average

wait time

(37 ticks);

RR

ensured

fair CPU

access but

led to

longer

wait times;

PBS

prioritized

efficiently

with

moderate

delays

Evaluation in

QEMU

emulation,

which lacks

accurate

modeling of

hardware-

level features

like

interrupt

timing and

context-

switching

Extension to

real-time

scheduling,

optimization

of dynamic

priorities,

integration of

power-aware

techniques,

and

validation on

real RISC-V

hardware

CPU ticks

(average wait

time, average

runtime);

qualitative

metrics like

fairness and

responsiveness

used instead of

traditional

accuracy

values



https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Journal of Emerging Technology and Digital Transformation
Online ISSN

3006-9726
Print ISSN

3006-9718 Volume . 4 Issue . 2 (2025)

32

19

Badis

HAMMI∗ ,

Joel

HACHE,

et al.

Dynamic

behavior-

based

analysis

using

machine

learning

(ensemble

voting

classifier:

hard & soft

voting with

DT, RF,

NB, KNN)

. dataset

with

42,797

malware

API call

sequences

and 1,079

benign

sequences,

extracted

from

Cuckoo

Sandbox

Accuracy

up to 99%,

MCC up to

0.647,

especially

for

Random

Forest and

Voting

Classifiers;

low false

positives

Computational

cost of

ensemble

methods;

dependency on

the quality of

dynamic

traces; limited

interpretability

of some

ensemble

outputs

Integration

into real-time

systems;

cross-

platform

generalization;

performance

Accuracy,

Matthews

Correlation

Coefficient

(MCC) used

for balanced

evaluation;

Soft/Hard

Voting

improves

generalization

across models

20 Md. Ratan

Rana,

Saikat Baul

Lazy

scheduling,

recursive

mapping,

IPC-based

sync

Literature

review

Fast

synchronou

s IPC,

performanc

e-

optimized

microkerne

l

Lack of

preemption

Modular

expansion,

compatibility

IPC latency

(qualitative)



https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Journal of Emerging Technology and Digital Transformation
Online ISSN

3006-9726
Print ISSN

3006-9718 Volume . 4 Issue . 2 (2025)

33

21 Ernest

Antolak,

Andrzej

Pułka

Redundant

replicated-

core

architecture;

register-

level

voting/corre

ction; thread

interleaving;

FPGA-

based

simulation

and fault

injection.

No

external

dataset.

Fault

injection

is

internally

generated

during

simulation

using

custom-

built fault

generator

in C#.

Achieves

fault

correction

with

minimal

performanc

e loss;

78%+

injected

faults had

no effect;

remaining

faults were

correctly

handled.

High hardware

cost; no

parallelism

across distinct

tasks;

minimum task

count

requirement;

limited fault

correction

under worst-

case overlaps.

Enhancing

PC/FR

protection,

improving

memory

verification,

dynamic

redundancy

strategies,

instruction

invalidation

under real-

time

constraints.

Not

traditional

(e.g.,

accuracy).

Metrics

include:

% of

corrected

injected

errors, timing

impact, task

capacity vs.

hardware

utilization.



https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Journal of Emerging Technology and Digital Transformation
Online ISSN

3006-9726
Print ISSN

3006-9718 Volume . 4 Issue . 2 (2025)

34

22Sadia

Sahar,

Hamayun

Khan, et

al.

Systematic

Literature

Review

(SLR),

qualitative

analysis

Research

articles,

conference

papers,

technical and

industry

reports from

academic

databases

(e.g., IEEE,

ACM, arXiv)

Identified

benefits

and

limitations

of user-

level

threads;

common

application

s and

language

support;

analysis of

trends and

future

directions

No empirical

benchmarking

or

implementation-

based

evaluation;

findings based

on secondary

data only

Need for

better OS

integration,

debugging

tools, hybrid

thread

models,

support for

blocking I/O,

and scalable

scheduling

mechanisms

performance

insights are

based on

reported

results in the

reviewed

literature

23Xia

Zhao,

Huiquan

Wang

Online

profiling,

cluster-

aware

scheduling,

SM

partitioning,

injection

control

GPU

simulation

with

multitasking

workloads

12.9%

average

system

throughput

improveme

nt, up to

76.5%

Topology

dependence,

limited

workload

diversity in

evaluation

Needs support

for

heterogeneous

workloads

and new GPU

designs

System

throughput

gain (%

improvement

https://link.springer.com/chapter/10.1007/978-3-031-77620-5_30
https://link.springer.com/chapter/10.1007/978-3-031-77620-5_30
https://link.springer.com/chapter/10.1007/978-3-031-77620-5_30
https://link.springer.com/chapter/10.1007/978-3-031-77620-5_30
https://link.springer.com/article/10.1007/s11241-023-09409-x
https://link.springer.com/article/10.1007/s11241-023-09409-x


https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Journal of Emerging Technology and Digital Transformation
Online ISSN

3006-9726
Print ISSN

3006-9718 Volume . 4 Issue . 2 (2025)

35

24Liu, et al. Specificatio

n-based

fuzzing,

systematic

on-disk

snapshotting

, state

comparison

methods

BTRFS,

F2FS, ext4,

UFS, XFS,

BCacheFS,

OpenZFS

(Linux file

systems)

Found 22

new bugs,

44% better

coverage

than

Hydra

Higher runtime

overhead; some

manual effort in

setup

Add image

mutation,

automate spec

writing,

optimize

snapshot

handling

Code

coverage,

bug count

25Ernest

Antolak,

et

al.(2024)

Polynomial

approximatio

empirical

measurement

FPGA

testben

60 custom

tasks + 300

system load

combinations

on KCU105

FPGA board

High-

accuracy

power

estimation

(< 4%

error),

polynomial

TF-power

model

Limited to

FPGA;

susceptible to

temperature

variation

No ASIC

validation yet;

temperature

influence not

fully modeled

Estimation

accuracy

(error

≤ 4%);

comparison

with

VIVADO

estimations



https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Journal of Emerging Technology and Digital Transformation
Online ISSN

3006-9726
Print ISSN

3006-9718 Volume . 4 Issue . 2 (2025)

36

26 Shun

Kida

, et al.

NUMA-

based CXL

emulation,

benchmark-

based

comparison,

synthetic

modeling

Graph500,

NAS Parallel

Benchmarks

(NPB),

scikit-learn

(K-means),

YCSB +

Memcached

SSD

swapping

offers

comparable

or better

throughput

in 9/14

benchmark

s

No real CXL

hardware,

limited to a

specific

system and

OS version

Lack of adaptive

systems

choosing

between CXL

and SSD;

evaluation of

tiering

Throughput

(varies by

benchmark:

TEPS,

ops/sec,

inverse

execution

time)

27

Dawson

R.

Engler,

et al.

Exokernel

design, code

inspection,

inlined calls,

type-safe

language

None Enhanced

performanc

e and

flexibility

via safe

kernel

customizati

on

Security

risks,

development

complexity,

lack of

benchmark

evaluation

Needs real-

world

validation,

better developer

tools, and safety

metrics

No

quantitative

accuracy, but

performance

and security

are key

concerns

https://dl.acm.org/doi/full/10.1145/3712031.3712332
https://dl.acm.org/doi/full/10.1145/3712031.3712332


https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Journal of Emerging Technology and Digital Transformation
Online ISSN

3006-9726
Print ISSN

3006-9718 Volume . 4 Issue . 2 (2025)

37

28 Hayfaa

Subhi

Malallah,

et al.

Compared

different

types of

operating

system

kernels (like

microkernel,

monolithic,

hybrid) and

reviewed

various

operating

systems

(Windows,

Linux, iOS,

Android,

Mac) based

on existing

studies

Not

experimental;

synthesized

from

literature and

technical

comparisons

of existing

OSs (Linux,

Windows,

Android,

iOS, Mac); no

empirical

dataset used

Found that

Linux and

Android

are the

most

researched

and used.

Discussed

common

kernel

issues such

as security,

compatibili

ty, and

performanc

e.

Explained

the types

of kernels

and

features of

each OS

The study is

descriptive

and lacks

real tests or

measured

results

Need for

empirical

performance

evaluation of

kernel

implementations

across OSs;

more

experimental

studies required

to test kernel

improvements

under real-

world scenarios

None



https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Journal of Emerging Technology and Digital Transformation
Online ISSN

3006-9726
Print ISSN

3006-9718 Volume . 4 Issue . 2 (2025)

38

29 Roberto

Rodriguez

-

Zurrunero,

et al.

Empirical

testing

using real-

world IoT

devices; task

priority

variation;

timing

analysis

Data

collected

from tests

conducted in

two real IoT

scenarios

Processing

tasks

significantl

y affect

communica

tion

performanc

e; mutual

timing

dependenc

y matters

Study

limited to

specific OS

and

protocols;

findings may

not

generalize

Lack of

research on

task

interaction in

modern IoT

OSs; need

broader

system

testing

Not focused on

accuracy;

evaluates

timing

efficiency,

communication

reliability

30 Vincent

Russo

Object-

oriented

system

design

using C++

class

hierarchies

No external

dataset;

based on

implementati

on and

system

behavior of

Choices

Successful

OS

implementa

tion using

class-based

design;

modular,

efficient,

extendable

Limited to

one

architecture

(Encore

Multimax);

lacks

performance

benchmarks

Need for

broader

validation on

various

hardware

platforms;

limited prior

OOP OS

examples

Not focused on

accuracy;

emphasizes

system

flexibility,

modularity,

efficiency

31 Xerox

PARC, et

al.

Static code

analysis,

microsecond

-level

dynamic

tracing,

thread

statistics

Source code

from Cedar

and GVX

systems

(~2.5 million

lines)

Identified

10 thread

usage

paradigms;

found that

thread

priorities

can be

Potential

bias from

specific

programmer

communities;

no direct

system

comparison

Need for

tools and

abstractions

to better

manage

thread

priorities and

complex

Focused on

responsiveness

and

performance

patterns; not

accuracy-based



https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Journal of Emerging Technology and Digital Transformation
Online ISSN

3006-9726
Print ISSN

3006-9718 Volume . 4 Issue . 2 (2025)

39

problemati

c

interactions

32 Okonta

O.E, et al.

PMU-based

performance

analysis,

comparison

between

single-

threading

and HT

modes

PMU data +

4 full-scale

CFD

scientific

applications

HTT

improves

processor

efficiency

but not

always

application

performanc

e

Performance

gains vary

by workload;

requires OS

support for

best results

Better

scheduling

and OS-level

support

needed for

HT

optimization

PMU metrics

(e.g., unhalted

core cycles,

cache hit/miss

rates), not

accuracy

33 Gulistan

Ahmead

Ismael, et

al.

Review and

comparison

of 20

scheduling

methods

used in real-

time

systems

from 2018

to 2020

Information

taken from

research

papers, tests

on real

systems like

IoT devices,

processors,

and cloud

setups

Better use

of CPU,

less energy

used, faster

task

handling,

fewer

delays

Some

methods are

complex,

slow to run,

and need lots

of data or

training to

work well

More work is

needed on

saving

energy,

handling

tasks on

GPUs, fault-

proof

systems, and

using AI for

better

scheduling

Includes CPU

usage, success

in task

handling,

energy saving

(up to 46%),

and meeting

time

deadlines



https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Journal of Emerging Technology and Digital Transformation
Online ISSN

3006-9726
Print ISSN

3006-9718 Volume . 4 Issue . 2 (2025)

40

34Anoop

Gupta, et

al.

Simulation-

based study

of

scheduling

strategies

(priority,

gang,

process

control,

affinity,

handoff) and

synchronizat

ion methods

(blocking vs.

busy-

waiting)

Four real

parallel

applications:

MP3D, LU,

Maxflow,

and

Matmul,

simulated

on 12-

processor

systems

Process

control had

the best

performanc

e (72%

CPU

utilization);

blocking

locks

improved

from 28%

to 65%;

gang

scheduling

up to 71%

High overhead

from context

switches,

cache miss

issues, limited

benefit from

affinity and

handoff

scheduling

Need to test

methods on real

hardware,

explore

scalability for

large

distributed

systems, and

integrate I/O

and mixed

workloads

Processor

utilization

(%); highest

observed

was 74%

(batch), 72%

(process

control),

71% (gang

scheduling)

35Mohamme

d Y.

Shakor

Literature

survey of

existing

scheduling

and

synchronizat

ion

algorithms

in OS

No dataset

used;

conceptual

and

theoretical

analysis

Identifies

advantages

and

limitations

of major

scheduling/

synchroniz

ation

methods;

useful

insights

into real-

No

experimental

data or

benchmarking;

only

theoretical

discussion

Need for real-

world

implementation,

dynamic

scheduling in

complex

environments,

better real-time

and multicore

solutions

Discussed

theoretically:

CPU

utilization,

waiting

time,

turnaround

time,

throughput,

and response

time



https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Journal of Emerging Technology and Digital Transformation
Online ISSN

3006-9726
Print ISSN

3006-9718 Volume . 4 Issue . 2 (2025)

41

time and

multicore

OS needs

36Nicholas

Turner

Custom

operating

system

kernel

design using

the 68000

microproces

sor;

emphasis on

minimal

context

switching,

no memory

management

unit used

No formal

dataset;

performance

tested

through

design goals

and system

behavior

under I/O

load

Achieved

high speed,

compactnes

s (kernel

under 20K),

smooth

multitaskin

g for 20

users over

serial lines

No memory

protection,

system

depends on

cooperative

"polite"

applications,

limited

modularity

No support for

memory

management or

broader

dynamic usage;

future work

could

include

scalability,

protection, or

general-purpose

application

support

Qualitative

metrics: fast

context

switching,

minimal

delay under

load,

compact

code

size (<20K),

low

overhead



https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Journal of Emerging Technology and Digital Transformation
Online ISSN

3006-9726
Print ISSN

3006-9718 Volume . 4 Issue . 2 (2025)

42

37

Peter J.

Denning

Static vs.

Dynamic

Storage

Allocation

Not

applicable

(conceptual/t

heoretical

paper)

Dynamic

(especially

automatic)

allocation

is more

effective

for

modern,

modular,

and shared

systems

Static

methods are

inflexible and

don't handle

unpredictable

program

behavior or

memory

availability

Need for better

automatic

memory

management in

dynamic and

multiprogrammin

g environments

Not

applicable

(no

numerical

accuracy

provided)

38

Donald E.

Porter

Added

system

transactions

to Linux

(TxOS)

Examples

like

OpenSSH

install, Linux

compile,

OpenLDAP

Made

system

actions

safer and

more

reliable

with only

small

slowdowns

Needs

changes to

the OS; may

not work

with all old

software or

hardware

More work

needed to

support all

system parts and

full

compatibility

10% slower

for

installs; 2–

4× faster

for some

tasks like

writing in

OpenLDAP

39

Rodney

Van

Meter, et

al.

Review and

analysis of

existing

NAP

projects and

OS support

Various NAP

projects and

systems

Identified

key

features,

benefits,

and

challenges

of NAPs

Rapidly

evolving

technology;

limited

coverage of

related areas

Need for better

OS support and

more research on

NAP design and

usage



https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Journal of Emerging Technology and Digital Transformation
Online ISSN

3006-9726
Print ISSN

3006-9718 Volume . 4 Issue . 2 (2025)

43

40

JAMES J.

KISTLER,

et al.

Disconnecte

d Operation

using

Client-side

Caching

Trace-driven

simulations;

Coda File

System

usage data

Enabled

continued

work

during

network

failure; 1–

2 days

offline

with quick

sync

Limited to

small disk

space

(100MB);

may

not suit

large- scale

data

Exploring longer

disconnection

periods; large-

scale deployment

Reconnect

& sync time

~1

minute; disk

use

/50–100MB



https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Journal of Emerging Technology and Digital Transformation
Online ISSN

3006-9726
Print ISSN

3006-9718 Volume . 4 Issue . 2 (2025)

44

Summaries

This paper introduces OSv, a new operating

system designed specifically for cloud-based

virtual machines running single applications.

Unlike general-purpose operating systems,

OSv eliminates unnecessary abstractions

such as user/kernel mode separation,

multiple address spaces, and process

management—optimizing instead for

performance, simplicity, and fast startup. The

OS is implemented using a single address

space and restructured kernel subsystems

like the scheduler, network stack, and file

system. It supports running Java applications

and other Linux binaries via POSIX

compatibility layers. Performance

benchmarks using workloads such as

Memcached and SPECjvm2008 demonstrate

significant improvements: up to 25% higher

throughput and up to 47% reduction in

latency compared to Linux on KVM. The

system offers fast boot times (<1s) and

compact image size. However, it is limited to

single-application deployments and lacks full

POSIX compliance.

This survey explores various OS

architectures, focusing on their treatment of

scalability, reliability, memory management,

and security. It examines several operating

systems such as MACH, Hive, TORNADO,

and K42, analyzing their suitability for

multicore and IoT environments. Each OS

showcases different strategies—Hive with its

fault containment through cells, TORNADO

optimizing for NUMA with object-oriented

design, MACH introducing microkernel

ideas, and K42 supporting modularity and

multiprocessing. The paper outlines how

these systems attempt to balance

performance and isolation in multicore

systems. However, it lacks empirical

benchmarks and focuses primarily on

theoretical capabilities. Future research is

suggested in the direction of OS scalability,

especially in heterogeneous multicore and

resource- constrained IoT systems.

This paper tackles the inefficiencies in

NUMA systems for multi-threaded

applications with shared memory.

Traditional NUMA optimizations rely on

system-wide memory access patterns, which

often fail for true multi-threaded workloads.

The authors propose Multi-View Address

Space (MVAS), a Linux kernel extension that

allows each thread to maintain its own

memory view using sibling page tables. This



https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Journal of Emerging Technology and Digital Transformation
Online ISSN

3006-9726
Print ISSN

3006-9718 Volume . 4 Issue . 2 (2025)

45

enables thread-specific tracking of memory

access and supports intelligent memory

migration, thereby improving locality. The

solution is implemented as a Linux kernel

module and evaluated on a 32-core 8-node

NUMA machine using HPC simulation

workloads. Results show improved memory

locality and reduced latency, though the

method requires kernel-level changes and

performs variably depending on application

behavior.

This survey analyzes enabling technologies

(OS and hypervisor layers) used for

executing network functions (NFs) on

general-purpose computing (GPC) platforms.

The paper categorizes solutions based on

abstraction mechanisms (containers, para-

virtualization), memory strategies (in-

memory computing, shared memory pools),

and I/O optimizations (SR-IOV, DPDK,

polling). It assesses performance trade-offs

between isolation and throughput,

particularly under latency- sensitive NF

workloads. Technologies like Kata containers,

XDP, and lightweight hypervisors are

reviewed. Despite their promise, existing

platforms lack unified evaluation frameworks

and often struggle to balance flexibility and

performance. The authors recommend

exploring hybrid I/O techniques, NUMA-

aware memory allocation, and container

security models in future work.

This foundational paper presents the Choices

operating system, an experimental OS built

entirely using object-oriented programming

(OOP) in C++. It explores modular OS

construction for multiprocessor systems by

organizing components (like process

management and exception handling) into a

class hierarchy. This separation of concerns

allows for cleaner design, easier maintenance,

and hardware portability. Though the system

focuses more on design than performance, it

demonstrates that OOP can be used

effectively for real-time and multiprocessor

OS kernels. The paper highlights the need

for new software engineering paradigms in

OS development but lacks quantitative

evaluations or large-scale empirical results.

This paper introduces innovative memory

management techniques used in VMware

ESX Server, such as ballooning, idle memory

tax, content-based page sharing, and hot I/O

page remapping. These mechanisms allow

the hypervisor to overcommit physical

memory across VMs while maintaining



https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Journal of Emerging Technology and Digital Transformation
Online ISSN

3006-9726
Print ISSN

3006-9718 Volume . 4 Issue . 2 (2025)

46

performance isolation and minimizing

redundancy. The ballooning driver

communicates with the guest OS to reclaim

underused memory without affecting VM

stability. Evaluation with the dbench

benchmark shows that memory can be

reclaimed with only 1.4%– 4.4% performance

degradation. The paper is influential in how

modern hypervisors manage memory

pressure without modifying guest OS kernels.

This master's thesis from 1986 presents the

design and implementation of a multi-user,

multitasking hierarchical file system for

IBM’s VM/CMS platform. The system

emulates UNIX-

like features—hierarchical directories, access

protection, concurrent access—using the

Virtual Machine Communication Facility

(VMCF) to enable communication between a

central file server virtual machine and

multiple user VMs. The file server handles

all file operations and supports two modes:

quiesce mode (users are notified when the

server is busy) and queueing mode

(commands are queued and processed

concurrently). The system incorporates

classical concurrent programming concepts

like semaphores and monitors for task

synchronization. Although the

implementation was successful in enabling

true multitasking and concurrent file

operations in VM/CMS, it is inherently

limited by its dependence on a dated

environment and does not integrate with

modern networking or distributed file

systems.

This bachelor's thesis proposes a

decentralized OS design intended for future

systems with dozens to hundreds of cores,

highlighting the limitations of traditional

SMP-based OSes like Linux and Windows

NT. The author suggests that rather than

retrofitting existing monolithic kernels, new

OS architectures should treat the many-core

system more like a distributed environment.

The proposed design splits core

responsibilities, using independent binary

modules and per-core OS services with

communication via message-passing (inspired

by Barrelfish and fos). The OS avoids shared-

kernel bottlenecks and uses a QEMU-

emulated environment for prototyping.

Features like decentralized scheduling,

dynamic core allocation, and communication

channels between services were partially

implemented. Although the thesis does not



https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Journal of Emerging Technology and Digital Transformation
Online ISSN

3006-9726
Print ISSN

3006-9718 Volume . 4 Issue . 2 (2025)

47

present real hardware evaluation, it sets the

groundwork for scalable OS design in the

many-core era. Future work includes real

hardware deployment, full-feature

integration (especially memory and I/O), and

support for legacy applications.

This thesis presents the design and

implementation of a multiuser, multitasking

file system for VM/CMS, modeled after

UNIX-style hierarchical file systems. The

system is built using the Virtual Machine

Communication Facility (VMCF), allowing

communication between user VMs and a

central file server VM. It supports features

like exclusive file updates, queuing, and

concurrency via multi-threaded command

processing. The architecture ensures

concurrent file access and efficient disk space

utilization in legacy environments.

Limitations include dependence on outdated

VM/CMS and lack of integration with

modern networking protocols.

This bachelor’s thesis proposes a

decentralized OS architecture for managing

hundreds of cores in many-core systems. It

critiques legacy OS scaling limits and

advocates a distributed design with minimal

shared memory and inter-core messaging.

Inspired by systems like Barrelfish and fos, it

proposes per-core OS services and scalable

core scheduling policies. A partial prototype

using QEMU emulation demonstrates initial

feasibility. The work identifies several future

directions, including refined memory models,

realistic workload testing, and integration of

legacy support layers.

The thesis builds a UNIX-like file system on

top of the VM/CMS environment to enable

multi-user, hierarchical directory support,

replacing CMS's flat, single-user model.

Using message-passing over VMCF, the

system supports queuing, exclusive access,

and real-time multi- user command execution.

It introduces quiesce and queuing modes for

concurrent access. The implementation

covers command parsing, queuing protocols,

concurrency primitives, and a custom file

server. Though successful in its context, it is

constrained by hardware and outdated OS

support.



https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Journal of Emerging Technology and Digital Transformation
Online ISSN

3006-9726
Print ISSN

3006-9718 Volume . 4 Issue . 2 (2025)

48

This paper outlines a novel operating system

architecture designed for systems expected to

have dozens to hundreds of cores. It critiques

traditional locking and kernel designs,

proposing an architecture that avoids shared

memory bottlenecks by using decentralized

services and message-passing. The proposed

system adopts lessons from previous

distributed OSes and is

aimed at general-purpose computing. Early

implementation shows feasibility, though

real-world applicability and performance

validation are pending. Future work includes

full system build-out and legacy

compatibility support.

This research paper presents a novel

approach to ransomware detection on

Windows operating systems by leveraging

Generative Adversarial Networks (GANs) to

analyze file system I/O Request Packet (IRP)

operations. The suggested method

significantly increase ransomware detection

by dynamically monitoring IRP operations

and differentiating between benign and

malicious behaviors with high accuracy.

Unlike traditional detection systems that rely

on predetermined threat signatures, the use

of GANs allows for adaptability to evolving

ransomware tactics, enabling the system to

detect unknown threats. Through rigorous

testing, the model outperforms conventional

detection methods, showcasing a potential

shift as regard machine learning-based

solutions for cybersecurity, mostly in

combating the increasing sophistication of

cyber threats. While the approach shows

promise, future work may focus on

optimizing the model for real-time detection

and testing it against various ransomware

variants.

SYSFLOW is a smart executable delivery

system designed for resource-constrained

IoT devices, contributing an alternative to

traditional methods like RPM and NFS,

which areineffective due to high storage and

I/O demands. It streams executables on-

demand from a server by monitoring client

disk I/O, predicting future block access using

historical patterns, and asynchronously

delivering required data. Using

multithreading, asynchronous

communication, and dynamic caching,

SYSFLOW significantly reduces latency—up

to 75.8% over Linux and 67.7% over NFS—

while slightly increasing power use but

lowering total energy through faster



https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Journal of Emerging Technology and Digital Transformation
Online ISSN

3006-9726
Print ISSN

3006-9718 Volume . 4 Issue . 2 (2025)

49

execution. even with its reliance on historical

patterns and limited scalability, SYSFLOW

shows strong potential, with future work

aimed at AI-based prediction and distributed

system support.

This review paper investigates the

architecture, scheduling mechanisms, and

classification of Real-Time Operating

Systems (RTOS), which are necessary in

systems requiring timely and deterministic

responses. The study discusses hard, soft, and

firm deadlines and emphasizes the

significance of meeting timing constraints in

critical applications like healthcare, aerospace,

and nuclear systems. It categorizes

scheduling strategies—preemptive, non-

preemptive, and round- robin—and examines

20 related works from 2018 to 2020. The

paper concludes that RTOS is integral for

embedded systems due to its time-sensitive

execution capabilities. The review identifies

the need for further optimization in

scheduling algorithms and real-time

decision-making under complex workloads.

This study analyze CPU scheduling

algorithms used in real-time operating

systems (RTOS), categorizing them into

preemptive and non-preemptive types. While

simpler algorithms like FCFS and Round

Robin are easy to implement, they often fail

to meet the strict timing needs of hard real-

time systems. In contrast, advanced

algorithms like Earliest Deadline First (EDF)

and Rate-Monotonic Scheduling (RMS) are

better suited for such environments due to

their ability to reliably meet deadlines. This

paper identifies applications in critical

systems like air traffic control and medical

devices, but also notes the trade-off between

scheduling complexity and resource

limitations. Future research ismotivated to

develop hybrid models that balance

performance and efficiency. Key metrics

analyzed include CPU utilization, deadline

miss ratio, and jitter.

This research paper offers a detailed review

of kernel architectures—monolithic,

microkernel, and hybrid—across major OS

platforms like Windows, Linux, Android, iOS,

and macOS. Analyzing 74 research papers, it

examines key kernel functions such as

memory management, scheduling, and

system security, particularly in contexts like

IoT, cloud computing, and web servers.

Linux and Android receive special focus due

to their open-source nature and



https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Journal of Emerging Technology and Digital Transformation
Online ISSN

3006-9726
Print ISSN

3006-9718 Volume . 4 Issue . 2 (2025)

50

vulnerability to security threats. The study

examines the use of techniques like machine

learning, TF-IDF, and virtualization for

increasing kernel robustness.

This study assess Round Robin, FCFS, and

Priority-Based Scheduling in the xv6

operating system on RISC-V architecture to

assess their performance in resource-

constrained environments. Modifications

included implementing the algorithms,

system call tracing (strace), process

monitoring (procdump), and a custom

bootloader. Experiments on QEMU with

I/O- and CPU- bound workloads revealed

that FCFS minimized wait time but suffered

from the convoy effect, RR ensured fairness

with longer waits for CPU-heavy tasks, and

PBS balanced priorities with moderate

overhead. Even with QEMU’s limitations,

the research highlights xv6’s educational

value and suggests future work in hybrid

scheduling, real-time support, and hardware

validation.

This study suggest a behavior-based

malware detection approach by examining

Windows system call sequences using a

voting classifier. The methodology employs

ensemble learning techniques, combining

Decision Tree, Random Forest, Naive Bayes,

and K-Nearest Neighbors (KNN) to improve

detection accuracy and decrease false

positives. The dataset comprises over 43,000

API call sequences (42,797 malicious and

1,079 benign) collected via Cuckoo Sandbox

reports. The aim is to detect novel and

signature-evasive malware without relying

on traditional static analysis. Results show

high detection performance with up to 99%

accuracy and a Matthews Correlation

Coefficient (MCC) up to 0.647, especially

with Random Forest and Voting Classifiers.

Applications include Endpoint Detection and

Response (EDR) systems, where the model

can identify previously unseen threats.

This research paper reviews eleven

microkernel-based operating systems to

analyze their approaches to core OS functions

like scheduling, memory management, and

inter-process communication (IPC), and how

these impact system security, performance,

and modularity. Through comparative

analysis of systems like L4, seL4, QNX, and

RC 4000, it finds that most microkernels use

priority-based round-robin scheduling,

varied memory models, and message- passing

IPC to achieve fault tolerance and real-time



https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Journal of Emerging Technology and Digital Transformation
Online ISSN

3006-9726
Print ISSN

3006-9718 Volume . 4 Issue . 2 (2025)

51

capabilities. While these designs benefit

modularity and adaptability—especially in

embedded and secure environments—they

also introduce challenges such as complexity,

performance overhead, and limited ecosystem

support.

This study establish a fault-tolerant, time-

predictable multitasking system based on the

PRET architecture, designed for safety-

critical real-time applications in harsh

environments like aerospace or automotive

systems. The system uses replicated single-

core execution with majority voting among

identical cores to detect and correct register-

level faults, preserving deterministic timing

through innovations like “cycle stealing”

during idle cycles. Implemented on an FPGA

and tested with fault injection, it effectively

corrects up to two simultaneous register

faults and showed over 75% fault immunity.

Limitations include high hardware demands,

a minimum task count, and lack of support

for diverse parallel tasks.

This study analysis the current research on

first-class user-level threads, or green

threads, which are lightweight threads

managed in user space rather than by the

operating system. Using a systematic

literature review, the authors found that

green threads offer fast context switching

and are easy to use for handling many small

tasks, making them popular in languages like

Go, Erlang, and JavaScript. They're great for

web servers, network apps, and games, but

struggle with tasks that need true parallelism

or involve blocking I/O. Key
challenges include limited OS integration,

debugging difficulties, and poor support for

CPU-heavy workloads. Future research

should focus on improving performance,

debugging, and scheduling for real-time and

dynamic environments.

This study enhances GPU spatial

multitasking by introducing a cluster-aware

scheduling policy that considers the GPU's

internal network-on-chip (NoC) structure,

which current methods



https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Journal of Emerging Technology and Digital Transformation
Online ISSN

3006-9726
Print ISSN

3006-9718 Volume . 4 Issue . 2 (2025)

52

overlook. By optimizing how streaming

multiprocessors (SMs) are grouped and

how applications share network ports,

the approach reduces contention and

boosts performance. Using low-

overhead profiling and dynamic

scheduling, the method increases

system throughput by an average of

12.9%, with gains up to 76.5%, without

major hardware changes. It’s useful for

HPC, AI, and GPU cloud workloads,

though its current design is limited to

specific NoC topologies and may face

challenges with diverse workloads.

SnapCC is a file system crash

consistency testing framework designed

to overcome the limitations of existing

tools like Hydra and B3 by

systematically exploring on-disk states.

It uses specification-based fuzzing,

snapshotting (via QEMU and BTRFS),

and automatic valid state verification to

detect consistency violations across

various Linux file systems. SnapCC

discovered 22 new bugs and achieved

up to 44% higher coverage than prior

tools, proving its effectiveness and

adaptability. While it incurs slightly

higher overhead and requires some

manual setup, future improvements aim

to introduce smarter image mutation,

reduce manual intervention, and

optimize snapshot handling.

The study establishes accurate and

practical method for estimating power

consumption in multitask, time-

predictable real-time systems using a

task frequency (TF)-based model.

different traditional tools like VIVADO,

which offer probabilistic and often

inaccurate estimations, the authors use

FPGA-based empirical measurements

and polynomial modeling to capture the

nonlinear relationship between power,

system frequency, and task load.

Implemented on a Xilinx Kintex

UltraScale FPGA, the method achieves

high accuracy (≤4% error) and supports

power- aware system design in safety-

critical applications.

This study compares Compute Express

Link (CXL) memory and SSD-based

memory swapping as strategies for

expanding memory capacity in data-

intensive applications. Using 14 macro-

benchmarks across diverse workloads

(graph processing, scientific computing,

machine learning, and key-value stores)

and a synthetic benchmark to control

access patterns, the authors find that

SSD swapping delivers comparable or

better performance than emulated CXL

memory in 9 out of 14 cases. The

results reveal that SSD swapping

performs well in workloads with

skewed, hot data access, while CXL



https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Journal of Emerging Technology and Digital Transformation
Online ISSN

3006-9726
Print ISSN

3006-9718 Volume . 4 Issue . 2 (2025)

53

excels in latency-sensitive, memory-

intensive tasks.

The study introduces Exokernel, a

novel operating system architecture

that enhances performance and

flexibility by minimizing kernel

responsibilities and exposing raw

hardware resources directly to

applications. This approach eliminates

high-level abstractions within the

kernel, allowing user-level libraries and

applications to implement their own,

more efficient versions. To test this idea,

the authors developed Aegis, a

prototype exokernel, and employed

three key techniques to ensure safe

kernel-level customization: code

inspection, inlined cross-domain calls,

and the use of type-safe languages.

These enable safe execution of

application code in privileged mode,

forming what the authors call a secure

programmable machine. Rather than

relying on traditional datasets, the

evaluation is based on the Aegis

prototype and conceptual performance

analysis. Results show that exokernels

improve modularity, performance, and

customizability, making them ideal for

use in custom operating systems,

embedded systems, and high-

performance computing. However,

limitations include security risks from

running user code in kernel mode,

increased development complexity, and

the lack of extensive real-world

performance data. Future research

should focus on broader comparisons

with traditional OS designs, better

developer tools for safe customization,

and strategies for balancing security

and performance in diverse

environments.

This comprehensive review investigates

kernel issues, structures, and functions

across various operating systems—

specifically Windows, Linux, Android,

iOS, and Mac OS. The studyemphasizes

the importance of the kernel as the

central component of an OS, focusing

on its structure (monolithic,

microkernel, hybrid), performance, and

associated challenges like security,

multitasking, and resource management.

The paper aggregates findings from

several research works that analyze

kernel vulnerabilities, performance

bottlenecks, and improvements using

techniques such as virtualization,

hardware support, machine learning,

memory management strategies, and

real-time systems evaluation. The

analysis spans desktop and mobile

environments, cloud infrastructure, IoT

devices, and embedded systems. The

review identifies that Linux and



https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Journal of Emerging Technology and Digital Transformation
Online ISSN

3006-9726
Print ISSN

3006-9718 Volume . 4 Issue . 2 (2025)

54

Android kernels dominate the research

landscape due to their open-source

nature and wide deployment.

Applications of the reviewed research

include enhanced intrusion detection,

improved real-time performance,

optimized memory usage, and secure

embedded systems. While the reviewed

solutions improve OS kernel robustness

and efficiency, limitations persist, such

as high inter-process communication

overhead in microkernels, outdated

system support, and insufficient

protection against evolving rootkits.

Future research directions include

integrating cloud-IoT infrastructure

more efficiently, refining machine

learning-based detection systems, and

developing adaptable kernel

architectures that meet modern

performance and security demands.

This study explores the interaction

between processing and communication

tasks in IoT end-devices within the

context of edge computing,

highlighting the challenges that arise

due to increased computational

demands. The research is motivated by

the shift from simple Wireless Sensor

Networks (WSNs) to more complex

IoT environments where end-devices

are expected to generate high-level

insights rather than just collect raw

sensor data. The study uses an

empirical approach involving multiple

tests across two real-world scenarios

using a specific IoT operating system

and wireless communication protocols.

These experiments vary processing

loads, task priorities, and

communication parameters such as the

radio duty cycle. The results reveal a

significant cross-influence: high

processing loads can degrade

communication performance and vice

versa. Importantly, this performance

impact is not only due to computational

load but also how processing and

communication timings are scheduled

and managed. Applications of this work

include optimizing OS and protocol

design for IoT systems to ensure

efficient and dependable communication

and processing. However, limitations

include a focus on specific OSs and

protocols, which may limit

generalizability. Future research could

explore a broader range of operating

systems, more diverse network

scenarios, and refined scheduling

strategies to mitigate these cross-effects.

This study presents the design and

implementation of the Choices

operating system, which applies object-

oriented programming (OOP)

principles—specifically class hierarchies



https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Journal of Emerging Technology and Digital Transformation
Online ISSN

3006-9726
Print ISSN

3006-9718 Volume . 4 Issue . 2 (2025)

55

in C++—to construct a multiprocessor

OS architecture. The goal is to explore

whether class hierarchical design can

effectively support the development of

low-level OS primitives such as

interrupt handling, process switching,

scheduling, and synchronization. The

Choices OS aims to support real-time,

high-performance applications on

heterogeneous multiprocessor systems

by allowing modular customization and

efficient system behavior without the

overhead of general-purpose OS

features. The system was tested on the

Encore Multimax platform, and results

howed that using OOP facilitated

modular design, hardware specialization,

and separation of mechanism and policy.

The study confirms the feasibility of

building full OSs using C++ and shows

that such an approach improves

maintainability and performance in

specific-use environments. However,

the paper is limited to one system

architecture and does not include

comparisons with traditional kernel

designs. Future work could explore

performance benchmarks, real-time

constraints in more diverse hardware

settings, and integration with modern

development tools.

This study investigates how threads are

used in two large systems developed at

Xerox— Cedar (a research platform)

and GVX (a commercial product). The

purpose was to identify common thread

usage paradigms, both effective and

problematic, by analyzing over 2.5

million lines of code across 10,000

modules. The researchers used a three-

pronged methodology: static code

analysis, dynamic event timing analysis

at microsecond resolution, and

examination of macroscopic thread

statistics. They identified ten paradigms

of thread use, including well-known

ones like defer work and lesser-known

ones like slack processes and

encapsulated fork. The slack process

was found to significantly improve

performance but was also hard to

manage. The study revealed that thread

priorities can lead to unintended issues,

highlighting the complexity of

designing thread-based systems. The

research emphasizes thread behavior as

a tool for structuring software rather

than just exploiting parallelism.

Though limited by programmer bias

and lack of cross-comparison between

systems, the study offers practical

insights and identifies future research

directions in thread abstractions and

design tools.

This paper explores Intel's Hyper-

Threading Technology (HTT),



https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Journal of Emerging Technology and Digital Transformation
Online ISSN

3006-9726
Print ISSN

3006-9718 Volume . 4 Issue . 2 (2025)

56

focusing on how it improves processor

resource utilization by allowing two

threads to run on each physical core

simultaneously. The study uses

Performance Monitoring Unit (PMU)

data, including metrics like instructions

retired, unhalted core cycles, and cache

performance (L2/L3), to evaluate HTT

effectiveness. The goal is to assess

whether HTT improves overall

efficiency and performance. By

analyzing real-world computational

fluid dynamics (CFD) applications, the

study finds that while HTT often

improves processor resource utilization,

it doesn’t always translate to better

overall application performance. The

paper also emphasizes that operating

system awareness of HTT is critical;

otherwise, HTT can negatively affect

performance. Limitations include the

dependency on workload type and OS

support. Future research is needed to

refine HTT scheduling and resource

management across varying workloads.

This study reviews various scheduling

algorithms used in Real-Time

Operating Systems (RTOS), which are

crucial for systems that must respond

quickly and correctly within a specific

time, like hospital monitors or autopilot

systems. The paper compares several

scheduling methods, explaining their

purpose, strengths, and weaknesses. It

also discusses how different models and

technologies like GPUs, DAG tasks,

and embedded systems are used in real-

time scheduling. The study uses past

research (2018–2020) involving

simulations and real-world tests to

show results like improved CPU use,

reduced delays, and better energy

savings. These findings help in

designing better real-time systems but

also reveal limitations like high

overhead, complexity, and the need for

better multi-task and energy-efficient

models. The paper highlights the need

for future research in areas like energy

harvesting, hardware acceleration, deep

learning integration, and more accurate

scheduling under complex conditions.

This study, conducted by researchers

from Stanford University, explores how

different operating system scheduling

methods and synchronization strategies

affect the performance of parallel

applications on multiprocessor systems.

Using detailed simulations, the authors

tested five scheduling policies—

priority-based, gang (coscheduling),

process control, handoff, and affinity

scheduling—on real applications like

matrix multiplication, LU

decomposition, and graph-based

algorithms. The study also compared



https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Journal of Emerging Technology and Digital Transformation
Online ISSN

3006-9726
Print ISSN

3006-9718 Volume . 4 Issue . 2 (2025)

57

busy-waiting versus blocking

synchronization. Results showed that

busy-waiting led to poor performance

due to wasted processor time, while

blocking locks and gang scheduling

significantly improved efficiency.

Among all, process control offered the

best overall performance by aligning

the number of running tasks with

available processors, leading to better

CPU usage and cache behavior.

However, some methods like handoff

and affinity scheduling provided only

small improvements. The paper

highlights limitations such as increased

context-switch overhead and cache miss

issues and suggests future work should

explore real-world implementation and

scalability for larger multiprocessors.

This paper by Mohammed Y. Shakor

provides a detailed survey of scheduling

and synchronization algorithms in

operating systems, highlighting their

importance in managing CPU resources

and ensuring smooth multitasking. It

covers popular scheduling techniques

like First- Come First-Serve (FCFS),

Shortest Job First (SJF), Priority

Scheduling, Round Robin (RR),

Multilevel Queue, and Multilevel

Feedback Queue, along with

synchronization problems like race

conditions and critical sections. The

study also examines real-time operating

systems, multiprocessor and multicore

scheduling, and the use of dynamic

versus static scheduling strategies.

Each algorithm’s strengths and

weaknesses are discussed, with FCFS

being simple but inefficient under load,

and RR being fair but leading to longer

waiting times. The purpose of this

study is to guide new researchers by

presenting foundational knowledge and

challenges in this field. The paper does

not use a specific dataset but relies on

theoretical and conceptual models. Its

limitations include a lack of

experimental validation and real-world

benchmarks. Future research is

suggested in optimizing scheduling for

dynamic environments and enhancing

synchronization in real-time and

multicore systems.

This article by Nicholas Turner

describes the development of a custom

32-bit multitasking kernel built on the

68000 microprocessor for Terra Nova

Communications. The goal was to

create a fast, compact, and low-cost

operating system suitable for handling

up to 20 real-time users over serial lines,

with minimal delay and consistent

performance. Instead of using

commercial operating systems—which

were too slow, bulky, and full of



https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Journal of Emerging Technology and Digital Transformation
Online ISSN

3006-9726
Print ISSN

3006-9718 Volume . 4 Issue . 2 (2025)

58

unnecessary error-handling code—the

team designed their own kernel tailored

to known applications. They avoided

memory management units and reduced

context-switching time by minimizing

what data had to be saved, resulting in a

smaller, faster system. The project

shows how a targeted, streamlined OS

can outperform general- purpose

systems when exact requirements are

known. Its main limitations include lack

of memory protection and reliance on

well-behaved applications. Future

improvements could explore more

dynamic task handling and increased

modularity for broader use.

Early computers used a memory

hierarchy due to the high cost of fast

memory. Programmers first managed

memory manually, but this became hard

with complex programs and high-level

languages. Two methods of memory

allocation emerged: static (planned

ahead) and dynamic (adjusts as the

program runs). Static methods became

less useful due to changing program

needs. Dynamic, automatic memory

allocation became essential, especially

for multitasking and time-sharing

systems.

This paper talks about TxOS, a version

of Linux that adds system transactions

to help programs safely access system

resources like files. These transactions

make sure that groups of actions

happen all at once, without errors from

crashes or other programs running at

the same time. This helps prevent

common problems like file corruption

or security bugs. TxOS adds simple

commands for starting and ending

transactions. It runs well on normal

computers with little slowdown. For

example, installing software with TxOS

is safer and only 10% slower. TxOS

makes programs easier to write and

more reliable.

This paper explains Network-Attached

Peripherals (NAPs), which connect to

computers through a network instead of

regular cables. NAPs are becoming

more common but need special

operating system support to work

properly. They can be shared by many

computers, work over long distances,

and communicate directly with each

other. However, they face challenges

like slower speeds, security issues, and

data problems. The paper focuses on

three main uses: device

communication, multimedia, and

storage. It aims to help understand

NAPs better and encourage more

research and improved system designs.



https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Journal of Emerging Technology and Digital Transformation
Online ISSN

3006-9726
Print ISSN

3006-9718 Volume . 4 Issue . 2 (2025)

59

This paper discusses the problem users

face when remote failures in distributed

file systems stop their work, even

though their own computers are

powerful enough to work independently.

Distributed file systems like NFS and

AFS are helpful for sharing and

managing data, but they create a

dependency on network access. The

authors propose "disconnected

operation," which lets users keep

working during network outages by

using cached data. They implemented

this in the Coda File System at

Carnegie Mellon University. Their

tests showed it works well, allowing

users to work offline for 1–2 days and

then quickly sync changes. This

approach improves both availability and

user experience

DISCUSSION

Across the 40 studies, several core

tensions emerge: performance vs.

modularity, generality vs. specialization,

and simplicity vs. scalability. While

minimalist kernels like OSv and

exokernels show exceptional

performance in constrained applications,

they lack flexibility or compatibility

with legacy applications. Conversely,

complex hybrid kernels support a

broader range of workloads but suffer

from increased overhead and security

risks. Similarly, while static scheduling

techniques perform well in controlled

environments, dynamic, energy-aware

scheduling models are needed for

modern, variable workloads, especially

in edge and IoT systems.

Another key insight is the increasing

convergence of OS research with other

disciplines—such as AI (for predictive

scheduling and memory allocation),

formal verification (for fault tolerance

and security), and hardware design (e.g.,

FPGA-based implementations). This

multidimensional approach is critical in

handling diverse modern workloads,

from cloud-scale distributed services to

embedded real-time systems. However,

several proposals remain conceptual or

simulation- based, underscoring the

need for real-world implementations

and broader hardware validation.

Despite limitations, these studies

collectively expand the knowledge base

of OS design and performance

management. They point toward future

systems that are not only faster and

more efficient but also more secure,

scalable, and intelligent.

Identified Research Gaps

Many studies lack consistent evaluation

metrics or frameworks.



https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Journal of Emerging Technology and Digital Transformation
Online ISSN

3006-9726
Print ISSN

3006-9718 Volume . 4 Issue . 2 (2025)

60

Designs validated in QEMU or

simulations need deployment on actual

hardware.

Few kernel-level performance studies

deeply integrate modern security

mechanisms.

Despite efforts real-time scheduling

under mixed loads needs deeper

investigation.

Future Research Directions

To address identified gaps, future

research should:

There's a need for standardized

benchmarking and performance metrics

across OS prototypes and scheduling

algorithms to allow more direct

comparisons.

Future work should integrate machine

learning for predictive scheduling,

adaptive memory management, and

anomaly detection—especially for cloud

and edge computing environments.

Decentralized and message-passing OS

designs (e.g., Barrelfish-inspired

systems) need to mature, incorporating

full memory and I/O stacks and real-

world workload testing.

Further research is needed into real-

time threat detection, system-level

transaction management (e.g., TxOS),

and resilient OS architectures that

minimize downtime under faults.

Hybrid scheduling models must be

designed with energy awareness,

particularly for RTOSs in power-

constrained IoT and mobile

environments.

Many papers rely on simulations.

Future research should validate new OS

designs and kernel modifications on

actual hardware platforms (e.g., RISC-V,

FPGA, or CXL-enabled systems).

CONCLUSION

In summary, the core components of an

operating system—such as time-

sharing, multitasking, memory

management, and file systems—work

together to provide a stable and

efficient environment for running

applications. The collected body of

research reflects a vibrant and evolving

landscape in operating system (OS)

design and implementation, driven by

diverse application domains including

cloud computing, real-time systems,

embedded platforms, and high-

performance computing. Innovations

span across kernel architectures,

scheduling algorithms, memory

management techniques, and OS-level

security mechanisms. From exokernels

and object- oriented designs to

decentralized, many-core systems,

researchers are continuously rethinking

the traditional abstractions and



https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Journal of Emerging Technology and Digital Transformation
Online ISSN

3006-9726
Print ISSN

3006-9718 Volume . 4 Issue . 2 (2025)

61

boundaries of OS functionality to meet

the demands of modern computing.

Several contributions demonstrate

significant improvements in

performance metrics like latency,

throughput, and energy efficiency,

while others highlight conceptual

advancements that pave the way for

modular, secure, and scalable systems.

Despite notable progress, a significant

portion of the literature remains

theoretical or simulation-based, with

limited deployment on real-world

hardware. Many approaches show

promise in controlled environments but

face challenges in terms of scalability,

interoperability, and generalizability.

There is also a consistent call for

unified benchmarking frameworks,

better developer tooling, and empirical

validations. Going forward, the

integration of AI, support for

heterogeneous hardware, and co-design

of hardware-software architectures will

be crucial to bridging these gaps and

realizing robust, adaptive, and efficient

operating systems for the next

generation of applications.

REFERENCES

Xu, B., & Wang, S. (2024). Examining

windows file system irp operations with

machine learning for ransomware

detection.

Ismael, G. A., Salih, A. A., AL-Zebari,

A., Omar, N., & Merceedi, K. J. (2021).

Scheduling Algorithms Implementation

for Real Time Operating Systems: A

Review. Asian Journal of Research in

Computer Science, 11(4), 35-51.

Shakor, M. Y. (2021). Scheduling and

synchronization algorithms in

operating system: a survey. Journal of

Studies in Science and Engineering, 1(2),

1-16.

Malallah, H., Zeebaree, S. R., Zebari, R.

R., Sadeeq, M. A., Ageed, Z. S., Ibrahim,

I. M., ... & Merceedi, K. J. (2021). A

comprehensive study of kernel (issues

and concepts) in different operating

systems. Asian Journal of Research in

Computer Science, 8(3), 16-31.

Madan, H. T., MANJUNATHA, H., &

Vidyashankar, M. (2025). CPU

scheduling algorithms performance

analysis in the RISC-V xv6 operating

system environment. Journal of

Integrated Science and Technology,

13(3), 1053-1053.

Hammi, B., Hachem, J., Rachini, A.,

Khatoun, R., & Aissaoui, H. (2024,

November). Malware detection through

windows system call analysis. In 2024

Ninth International Conference On



https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Journal of Emerging Technology and Digital Transformation
Online ISSN

3006-9726
Print ISSN

3006-9718 Volume . 4 Issue . 2 (2025)

62

Mobile And Secure Services

(MobiSecServ) (pp. 1-7). IEEE.

Rana, M. R., & Baul, S. (2024). An

Overview of Operating Systems Based

on Microkernel Technology and their

Essential Components. International

Journal of Information Engineering and

Electronic Business, 16(6), 10-5815.

Antolak, E., & Pułka, A. (2024). Fault-
Tolerant Multitasking System Based on

Interleaving of Threads. Electronics,

13(23), 4701.

Sahar, S., Khan, H., Tariq, M. I., Ashraf,

A., & Zahra, S. A. (2025). An Interactive

System Based on First-Class User-

Level Threads: A Systematic Review. In

International Conference on Computing

& Emerging Technologies (pp. 380-

394). Springer, Cham.

Liu, J., Shen, Y., Xu, Y., Sun, H., &

Jiang, Y. (2025). Snapcc: Effective file

system consistency testing using

systematic state exploration. ACM

Transactions on Software Engineering

and Methodology.

Antolak, E., & Pułka, A. (2024). Power
consumption prediction in real-time

multitasking systems. Electronics, 13(7),

1347.

Kida, S., Imamura, S., & Kono, K. (2025,

February). Revisiting Memory

Swapping for Big- Memory

Applications. In Proceedings of the

International Conference on High

Performance Computing in Asia-Pacific

Region (pp. 33-42).

Engler, D. R., Kaashoek, M. F., &

O'Toole Jr, J. W. (1995). The operating

system kernel as a secure

programmable machine. ACM SIGOPS

Operating Systems Review, 29(1), 78-

82.

Malallah, H., Zeebaree, S. R., Zebari, R.

R., Sadeeq, M. A., Ageed, Z. S., Ibrahim,

I. M., ... & Merceedi, K. J. (2021). A

comprehensive study of kernel (issues

and concepts) in different operating

systems. Asian Journal of Research in

Computer Science, 8(3), 16-31.

Rodriguez-Zurrunero, R., Utrilla, R.,

Rozas, A., & Araujo, A. (2019). Process

management in IoT operating systems:

Cross-influence between processing and

communication tasks in end- devices.

Sensors, 19(4), 805.

Russo, V., Johnston, G., & Campbell, R.

(1988, January). Process management

and exception handling in

multiprocessor operating systems using

object-oriented design techniques. In

Conference proceedings on Object-

oriented programming systems,

languages and applications

Hauser, C., Jacobi, C., Theimer, M.,

Welch, B., & Weiser, M. (1993). Using

threads in interactive systems: A case



https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Journal of Emerging Technology and Digital Transformation
Online ISSN

3006-9726
Print ISSN

3006-9718 Volume . 4 Issue . 2 (2025)

63

study. ACM SIGOPS Operating

Systems Review, 27(5), 94-105

Okonta, O. E., Ajani, D., Owolabi, A. A.,

Imiere, E. E., & Uzomah, L. (2015).

Performance evaluation of hyper

threading technology architecture using

Microsoft operating system platform.

West African Journal of Industrial and

Academic Research, 15(1), 52-67

7. Ismael, G. A., Salih, A. A., AL-Zebari,

A., Omar, N., & Merceedi, K. J. (2021).

Scheduling Algorithms Implementation

for Real Time Operating Systems: A

Review. Asian Journal of Research in

Computer Science, 11(4), 35-51

8. Gupta, A., Tucker, A., & Urushibara,

S. (1991, April). The impact of

operating system scheduling policies

and synchronization methods of

performance of parallel applications. In

Proceedings of the 1991 ACM

SIGMETRICS conference on

Measurement and modeling of

computer systems (pp. 120-132)

9. Shakor, M. Y. (2021). Scheduling and

synchronization algorithms in

operating system: a survey. Journal of

Studies in Science and Engineering, 1(2),

1-16

10. Turner, N. (1986). A Simple

Multitasking Operating System for

Real-Time Applications. Dr. Dobb’s

Journal, 1, 44-58

Kivity, A., Laor, D., Costa, G., Enberg,

P., Har’El, N., Marti, D., & Zolotarov, V.

(2014).

{OSv—Optimizing} the Operating

System for Virtual Machines. In 2014

usenix annual technical conference

(usenix atc 14) (pp. 61-72).

Marufuzzaman, M., Al Karim, S.,

Rahman, M. S., Zahid, N. M., & Sidek, L.

M. (2019). A review on reliability,

security and memory management of

numerous operating systems.

Indonesian Journal of Electrical

Engineering and Informatics (IJEEI),

7(3), 577-585.

Di Gennaro, I., Pellegrini, A., & Quaglia,

F. (2016, May). OS-based NUMA

optimization: Tackling the case of truly

multi-thread applications with non-

partitioned virtual page accesses. In

2016 16th IEEE/ACM International

Symposium on Cluster, Cloud and Grid

Computing (CCGrid) (pp. 291-300).

IEEE.

Thyagaturu, A. S., Shantharama, P.,

Nasrallah, A., & Reisslein, M. (2022).

Operating systems and hypervisors for

network functions: A survey of enabling

technologies and research studies.

IEEE Access, 10, 79825-79873.

Russo, V., Johnston, G., & Campbell, R.

(1988, January). Process management

and exception handling in



https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Journal of Emerging Technology and Digital Transformation
Online ISSN

3006-9726
Print ISSN

3006-9718 Volume . 4 Issue . 2 (2025)

64

multiprocessor operating systems using

object-oriented design techniques. In

Conference proceedings on Object-

oriented programming systems,

languages and applications (pp. 248-

258).

Waldspurger, C. A. (2002). Memory

resource management in VMware ESX

server. ACM SIGOPS Operating

Systems Review, 36(SI), 181-194.

Date, S. P. (1986). A multi-tasking

hierarchical file system for VM/CMS

using virtual machine communication

(Master's thesis, Dept. of Computer

Science.University of Houston-

University Park).

Bendele, C. (2010). Core and process

management for future many-core

architectures.

Date, S. P. (1986). A multi-tasking

hierarchical file system for VM/CMS

using virtual machine communication

(Master's thesis, Dept. of Computer

Science.University of Houston-

University Park).

Bendele, C. (2010). Core and process

management for future many-core

architectures.

Date, S. P. (1986). A multi-tasking

hierarchical file system for VM/CMS

using virtual machine communication

(Master's thesis, Dept. of Computer

Science.University of Houston-

University Park).

Bendele, C. (2010). Core and process

management for future many-core

architectures.

Date, S. P. (1986). A multi-tasking

hierarchical file system for VM/CMS

using virtual machine communication

(Master's thesis, Dept. of Computer

Science.University of Houston-

University Park).

Bendele, C. (2010). Core and process

management for future many-core

architectures.

Budzinski, R. L., & Davidson, E. S.

(1981). A comparison of dynamic and

static virtual memory allocation

algorithms. IEEE Transactions on

software Engineering, (1), 122-131

Porter, D. E., & Witchel, E. (2010, July).

Transactional system calls on Linux. In

Linux Symposium (p. 231

Ben-Yehuda, M., Breitgand, D., Factor,

M., Kolodner, H., Kravtsov, V., &

Pelleg, D. (2009, June). NAP: a building

block for remediating performance

bottlenecks via black box network

analysis. In Proceedings of the 6th

international conference on Autonomic

computing (pp. 179- 188

Mazer, M. S., & Tardo, J. J. (1994,

December). A client-side-only approach

to disconnected file access. In 1994



https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Journal of Emerging Technology and Digital Transformation
Online ISSN

3006-9726
Print ISSN

3006-9718 Volume . 4 Issue . 2 (2025)

65

First Workshop on Mobile Computing

Systems and Applications (pp. 104- 110).

IEEE


