
66

https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

JOURNAL OF EMERGING TECHNOLOGY AND DIGITAL TRANSFORMATION
ONLINE ISSN

3006-9726
PRINT ISSN

VOLUME . 4 ISSUE . 2 (2025)

THE EVOLUTION OF SDMS: TRENDS, TRADE-OFFS, AND
FUTURE DIRECTIONS

Abdulrehman Arif
Department of Computer Science, University of Southern Punjab Multan
Khanabdulrehman026@gmail.com
Muhammad Zeeshan Haider Ali
Department of Computer Science, University of Southern Punjab Multan
ali.zeeshan04@gmail.com
Qasim Niaz
Department of Computer Science, University of Southern Punjab Multan
qasimniaz@usp.edu.pk
Muhammad Azam
Department of Computer Science, University of Southern Punjab Multan
Crossponding Authormuhammadazam.lashari@gmail.com
Mubasher H Malik
Department of Computer Science, University of Southern Punjab Multan
mubasher@usp.edu.pk
Ammad Hussain
Department of Computer Science, University of Southern Punjab Multan
ammadhussain709@gmail.com

https://doi.org/10.5281/zenodo.16311645

ABSTRACT:
Software development has undergone significant paradigm shifts, transitioning from rigid, linear models to
adaptive, iterative methodologies. This paper critically examines Software Development Methodologies (SDMs)
by evaluating key developments, their associated strengths and limitations, and future trajectories. Unlike prior
literature, which often presents uncritical endorsements of Agile methods, this study focuses on real-world
implementation, contextual fit, and long-term sustainability. Drawing from academic sources, industry reports,
and hybrid case studies, the analysis challenges mainstream success narratives and highlights the methodological
trade-offs involved in SDM selection. Particular attention is given to the limitations of Agile in distributed and
highly regulated environments, where hybrid models such as DevOps and SAFe have emerged as more context-
appropriate solutions. The study advocates empirical, future-oriented approaches to guide the development and
application of SDMs in increasingly complex and dynamic software engineering settings.
Keywords Software Development Methodologies (SDMs), Agile vs. Waterfall, Hybrid Approaches,
Methodological Trade-offs, Future Trends in Software Engineering

RECEIVED
08 June 2025

ACCEPTED
15 June 2025

PUBLISHED
22 July 2025

3006-9718

mailto:Khanabdulrehman026@gmail.com
mailto:ali.zeeshan04@gmail.com
mailto:qasimniaz@usp.edu.pk
mailto:muhammadazam.lashari@gmail.com
mailto:muhasher@usp.edu.pk
mailto:ammadhussain709@gmail.com
https://doi.org/10.5281/zenodo.16311645


JOURNAL OF EMERGING TECHNOLOGY AND DIGITAL TRANSFORMATION
ONLINE ISSN

3006-9726
PRINT ISSN

3006-9718 VOLUME . 4 ISSUE . 2 (2025)

67

https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Introduction

Software Development Methodologies

(SDMs) form the foundational framework

through which software professionals’

structure and execute the development and

delivery of software products. Historically,

the software industry relied on plan-driven

models such as the Waterfall model (Royce,

1970), which emphasized linear sequencing

and detailed documentation. However, the

rise of agile methodologies, including Scrum

and Extreme Programming (XP)—marked a

major shift in response to increasingly

dynamic technical, organizational, and

business requirements (Beck et al., 2001).

Despite the widespread adoption of agile

frameworks, much of the academic literature

portrays the evolution of SDMs as a linear

progression toward agility, often overlooking

the limitations and contextual constraints of

these methods. This research adopts a critical

perspective, examining SDMs through three

analytical lenses: trend analysis,

methodological trade-offs, and strategic

forecasting. Existing comparative studies

frequently overlook three core limitations

that undermine SDM performance across

real-world projects. For instance, Agile

collaboration often fails in distributed teams

and highly regulated environments due to its

reduced emphasis on coordination and

documentation (Wohlin et al., 2012).

Organizations such as Electronic Arts have

begun adopting hybrid methodologies, such

as DevOps, Wagile, and SAFe, which blend

traditional and Agile practices to improve

delivery in complex contexts (Fitzgerald &

Stol, 2017). These hybrid models are often

underrepresented in academic literature,

treated as mere variations rather than as

innovative methodologies in their own right.

To address this, the present study proposes a

comprehensive SDM evaluation framework

focused on four key decision-making

variables: organizational structure, team

maturity, project criticality, and technical

implementation barriers. Drawing on real-

world implementation examples, case-based

research, and statistical evidence, this paper

offers practical guidance for selecting and

tailoring SDMs in today’s dynamic software

environments (Dingsøyr et al., 2012).

1.1 What Existing Research Gets Wrong

Despite the extensive body of literature on

Software Development Methodologies



JOURNAL OF EMERGING TECHNOLOGY AND DIGITAL TRANSFORMATION
ONLINE ISSN

3006-9726
PRINT ISSN

3006-9718 VOLUME . 4 ISSUE . 2 (2025)

68

https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

(SDMs), several significant gaps remain

unaddressed. First, much of the existing

research fails to provide empirical or case-

based evidence, relying instead on conceptual

discussions that lack real-world validation.

There is a pressing need for the synthesis of

practical case studies and performance

metrics that can inform practitioners

operating in complex, dynamic environments.

Second, while Agile methodologies are

widely praised, their limitations are seldom

examined critically. Existing literature tends

to highlight only successful implementations,

ignoring the frequent challenges Agile faces

in distributed teams, highly regulated

environments, or projects requiring heavy

documentation (Wohlin et al., 2012). It is

essential to address Agile’s failure modes to

provide a more balanced perspective.

Third, hybrid and mixed methodologies are

often treated as secondary options or minor

variants of existing models. This oversight

marginalizes their significance despite their

growing use in enterprise environments.

These models—such as DevOps, SAFe, and

Wagile—should be recognized and studied as

first-class methodologies in their own right

(Fitzgerald & Stol, 2017).

Additionally, literature lacks actionable

decision-making frameworks for selecting

appropriate SDMs. Few studies offer models

that guide organizations based on project-

specific variables such as risk, compliance,

stakeholder complexity, or delivery timelines.

Developing context-aware SDM selection

frameworks would offer more practical value

for software teams.

Finally, academic research has struggled to

keep pace with evolving industry practices.

Recent trends such as DevOps integration,

AI-enhanced development tools, and the

normalization of remote software teams are

seldom incorporated into formal analyses

(Amershi et al., 2019; Zikria et al., 2023).

Addressing these gaps would help bridge the

divide between theory and practice in

modern software development.

1.2 Background / Theoretical Framework

The evolution of SDMs has been driven by

the need to adapt to changing technical

demands and increasing project complexity.

In the early phases of software engineering,

plan-driven models such as Waterfall and the

V-Model were widely adopted for their

structure and suitability in projects with

well-defined requirements (Ogundare &



JOURNAL OF EMERGING TECHNOLOGY AND DIGITAL TRANSFORMATION
ONLINE ISSN

3006-9726
PRINT ISSN

3006-9718 VOLUME . 4 ISSUE . 2 (2025)

69

https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Osuolale, 2022; Sharma & Patidar, 2024).

However, during the 1980s, the growing

complexity of systems revealed the

shortcomings of these linear models. This led

to the development of the Spiral model,

which introduced iterative feedback loops

and integrated risk assessment (Mahmoud,

2014).

In the early 2000s, the Agile Manifesto

initiated a paradigm shift in software

development by promoting continuous

delivery, customer collaboration, and

flexibility (Beck et al., 2001). Agile

frameworks such as Scrum, Extreme

Programming (XP), and Kanban quickly

gained traction due to their adaptability and

iterative delivery mechanisms (Balaji &

Murugaiyan, 2023; Sharma & Patidar, 2024).

DevOps emerged as a natural extension of

Agile, integrating development and

operations through automation, collaboration,

and continuous integration (Bass & Weber,

2015; Rana, 2023). The SDM landscape now

includes four primary categories:

• Heavyweight methodologies (e.g.,

Waterfall): Emphasize stability, predictability,

and documentation—ideal for projects with

fixed requirements (Ogundare & Osuolale,

2022).

• Lightweight methodologies (e.g.,

Agile): Focus on adaptability, iterative cycles,

and frequent stakeholder feedback (Sharma &

Patidar, 2024).

• Hybrid methodologies (e.g., DevOps,

SAFe): Combine elements of both approaches

to manage complexity in enterprise

environments (Niazi et al., 2020).

• Emerging methodologies: Leverage

AI and ML to automate phases such as testing,

deployment, and decision support (Amershi et

al., 2019).

All SDMs typically involve six key phases:

requirements gathering, design,

implementation, testing, deployment, and

maintenance. While traditional methods

execute these phases sequentially, Agile and

DevOps adopt iterative and parallel

workflows that enable continuous feedback

and faster delivery (Balaji & Murugaiyan,

2023).



JOURNAL OF EMERGING TECHNOLOGY AND DIGITAL TRANSFORMATION
ONLINE ISSN

3006-9726
PRINT ISSN

3006-9718 VOLUME . 4 ISSUE . 2 (2025)

70

https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Fig1 Evolutions of SDM

1. Literature Review

Beecham et al. (2003) introduce the Quality

Assurance Tradeoff Analysis Method

(QATAM), a decision-support tool that aids

project planning by balancing testing

requirements, deadlines, and defect risks.

Applied in a mid-sized software firm,

QATAM improved planning consistency and

delivery outcomes. The approach connects

theoretical QA principles with actual practice,

making it particularly beneficial for

engineering managers seeking to align

quality with project constraints.

Clements and Bass (2003) provide a

comprehensive explanation of the

Architecture Tradeoff Analysis Method

(ATAM), emphasizing how it supports the

management of conflicting software quality

attributes. The authors illustrate that

architectural decisions often involve trade-

offs—enhancing one attribute (e.g.,

scalability) may compromise another (e.g.,

performance). By incorporating stakeholder

scenarios and utility trees, ATAM exposes

these interactions and enables informed

decision-making. The method encourages a

strategic and action-oriented approach to

architecture, highlighting its role not just as



JOURNAL OF EMERGING TECHNOLOGY AND DIGITAL TRANSFORMATION
ONLINE ISSN

3006-9726
PRINT ISSN

3006-9718 VOLUME . 4 ISSUE . 2 (2025)

71

https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

theoretical knowledge but as a practice
rooted in informed design choices.

Tesoriero (2008) examines 29 development

practices to evaluate their impact on team

efficiency and software quality. The research

finds that tools like automated testing and

pair programming yield better results when

aligned with clearly defined performance

objectives. Emphasizing leadership

alignment over rigid adherence to specific

methodologies, Tesoriero highlights the

importance of adapting practices to

organizational context. The study is

grounded in real-world observations, offering

practical insights beyond theoretical

frameworks. It is also accessible to non-

technical audiences, including marketers, and

provides evidence-based guidance for

improving team operations and decision-

making in software development

environments.

Highsmith (2009) presents Agile not merely

as a methodology, but as a mindset that

encourages adaptability, creativity, and

continuous learning. He emphasizes

principles such as customer collaboration and

iterative delivery as tools for solving

complex problems and fostering innovation.

Through real-world stories, the book

illustrates how Agile enables teams to

respond rapidly to change. Highsmith argues

that successful Agile leadership prioritizes

empowerment over control and embraces

failure as a catalyst for innovation—an aspect

often overlooked in technical discussions.

This work is both foundational and

motivational for understanding Agile beyond

its mechanics.

Wohlin, Fors, and Wallin (2012) conduct a

systematic review on how quality assurance

(QA) practices impact other software

development dimensions such as performance,

adaptability, and security. They propose a

framework to evaluate the trade-offs

associated with QA decisions. The study

highlights gaps in research, particularly in

cost-benefit analysis, and advocates for

decision-making models that reflect real-

world work environments. Their work

contributes significantly to improving

decision quality in software production

processes.

Poppendieck and Cusumano (2012) adapt

Lean principles from manufacturing to the

realm of software development, focusing on

minimizing waste and maximizing customer



JOURNAL OF EMERGING TECHNOLOGY AND DIGITAL TRANSFORMATION
ONLINE ISSN

3006-9726
PRINT ISSN

3006-9718 VOLUME . 4 ISSUE . 2 (2025)

72

https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

value. They advocate for practices such as

smaller batch sizes, continuous learning, and

production efficiency. While aligning Lean

with Agile methodologies, the authors

emphasize the need for broader cultural

change in how teams think and operate. The

book combines conceptual insight with

actionable advice, making it a valuable

resource for both developers and leaders

seeking to improve value delivery and

operational effectiveness in software projects.

Mahmoud (2014) presents a historical

narrative of software development models,

tracing the shift from early code-and-fix

strategies to modern hybrid Agile

frameworks. His analysis connects the

evolution of methodologies to factors such as

team dynamics, economic pressures, and

increasing system complexity. Mahmoud

highlights a broader change in organizational

priorities—from emphasizing control and

documentation to valuing adaptability and

speed. He also explores future directions in

SDLC, including AI integration and

architectural convergence. The work offers a

strong foundation for understanding how

software development methodologies have

changed over time.

Bass and Weber (2015) explore the

practical impact of DevOps on software

delivery performance. Through real-world

case studies, they demonstrate how DevOps

reduces deployment time, accelerates

problem resolution, and enhances team

collaboration. The study moves beyond

automation to focus on operational culture

and responsibility ownership within teams.

Their findings show that DevOps

significantly improves speed-to-market and

incident management, establishing it as a

transformative, not temporary, approach to

modern software engineering. This work

serves as a persuasive resource for justifying

DevOps adoption in organizations.

Hardgrave (2017) offers a comprehensive

exploration of the evolution of Software

Development Life Cycle (SDLC) approaches,

blending technical analysis with historical

narratives and developer perspectives. His

work distinguishes various methodologies

not just in terms of process, but also through

philosophical underpinnings and practical

implications. By citing business leaders, he

illustrates the tension between flexibility and

control. The study is particularly insightful

for professionals in fields like healthcare,



JOURNAL OF EMERGING TECHNOLOGY AND DIGITAL TRANSFORMATION
ONLINE ISSN

3006-9726
PRINT ISSN

3006-9718 VOLUME . 4 ISSUE . 2 (2025)

73

https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

where understanding the broader

implications of development approaches aids

in selecting suitable techniques. Hardgrave’s

analysis helps contextualize coding practices

within a larger organizational and human-

centered framework.

Fitzgerald and Stol (2017) examine how

combining Agile and Waterfall methods can

offer practical solutions for complex software

projects. Drawing on case studies from large

enterprises, they illustrate how hybrid

models address integration challenges and

cultural resistance. Their framework

emphasizes starting with structured

planning—such as early risk assessments—

while allowing iterative improvements along

the way. The authors argue that not all

projects can adopt Agile outright and

propose step-by-step transitions to

accommodate real-world constraints. This

study provides a grounded and adaptable

model for organizations navigating between

traditional and modern development

practices.

Amershi et al. (2019) examine how artificial

intelligence (AI) and machine learning (ML)

are transforming software development

practices. The study highlights AI’s role in

automating tasks such as code review, testing,

and decision-making. While these

technologies enhance efficiency, the authors

caution against fully replacing human

judgment—particularly for complex

decisions—due to ethical concerns and

interpretability challenges. They argue that

AI should augment, not replace, traditional

Software Development Life Cycles (SDLC),

contributing to smarter and more adaptive

development environments. The paper offers

forward-looking insights into the integration

of AI within software engineering.

Niazi et al. (2020) investigate hybrid Agile

approaches through empirical data and

developer interviews. Their findings suggest

that businesses increasingly prefer adaptive

models that combine structure with

flexibility. The study points out that while

pure Agile often overlooks security, hybrid

models tend to address such gaps more

effectively. The authors advocate for tailored

solutions in SDLC, emphasizing that

innovation should be balanced with

regulatory compliance. Their research offers

grounded, real-world insights into how Agile

practices are customized across industries.



JOURNAL OF EMERGING TECHNOLOGY AND DIGITAL TRANSFORMATION
ONLINE ISSN

3006-9726
PRINT ISSN

3006-9718 VOLUME . 4 ISSUE . 2 (2025)

74

https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Theocharis et al. (2021) propose a decision-

making model to guide teams in selecting

suitable Software Development Life Cycle

(SDLC) methodologies. Instead of strictly

choosing between Agile and Waterfall, the

model emphasizes factors such as project risk,

size, and stakeholder stability. The authors

advocate for a logical and evidence-based

approach, recommending the use of a matrix

that incorporates both qualitative and

quantitative data. Standardized criteria like

team experience and time constraints support

consistent and practical decision-making.

Their adaptive model helps align chosen

methods with project realities, discouraging

blind adoption of industry trends.

Erder and Hirsh (2021) present a modern

approach to architectural decision-making by

integrating the principles of Continuous

Architecture with Agile methodologies.

Their framework builds upon ATAM and

emphasizes continuous validation,

stakeholder involvement, and the alignment

of technical decisions with business goals.

The book offers practical guidance supported

by real-world case scenarios, making it

suitable for both practitioners and educators.

It challenges the notion of fixed architectural

decisions, instead advocating for adaptability

in dynamic environments such as DevOps,

Agile workflows, and cloud-based systems.

Hussain and Qamar (2022) conduct a

comparative analysis of Agile and Waterfall

methodologies by examining metrics like

productivity, defect rates, and team

satisfaction. Their study finds that Agile is

more suitable for projects requiring speed

and responsiveness, whereas Waterfall is

often favored in regulatory environments due

to its structured, traceable nature. The

authors use sector-based case studies to

highlight challenges in transitioning from

traditional to Agile methods. The research

critically questions the assumption that Agile

is universally applicable and encourages

thoughtful adoption based on project context.

Ogundare and Osuolale (2022) conducted

an empirical comparison of Agile and

Waterfall methodologies within the context

of a real-world project. Their findings reveal

that Agile methods facilitate faster releases

and quicker feedback loops, while also

enhancing teamwork and adaptability to

change. In contrast, the Waterfall model,

though dependable, lacked flexibility in

accommodating rapid changes. The study



JOURNAL OF EMERGING TECHNOLOGY AND DIGITAL TRANSFORMATION
ONLINE ISSN

3006-9726
PRINT ISSN

3006-9718 VOLUME . 4 ISSUE . 2 (2025)

75

https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

went beyond general observations by

evaluating performance metrics over time

and across varying budget levels. The results

reinforce Agile's effectiveness in dynamic

environments and offer useful insights for

organizations prioritizing speed and

responsiveness over rigid consistency.

JSAER (2022) examines the contrasts

between Agile and Waterfall models,

focusing on scope flexibility, risk tolerance,

and stakeholder involvement. The paper

introduces a fact-based decision-making tool

to help project managers select the

appropriate methodology. While Waterfall

suits high-compliance projects, Agile is more

effective in dynamic, fast-changing

environments. The study supports hybrid

approaches when strict distinctions fail to

meet situational needs, offering a structured

path for selecting or combining methods.

Zikria et al. (2023) compare lightweight

agile models such as Scrum and XP with the

traditional Waterfall methodology. Their

study highlights the predictability of

conventional approaches versus the flexibility

offered by agile methods. The authors

identify a growing trend of blending or

adapting educational and development

strategies to meet the evolving needs of

modern businesses. They emphasize how

iterative development has become a preferred

choice in dynamic environments, though they

also acknowledge challenges, particularly

with the scalability of agile frameworks. The

review draws from both academic and

industry-based insights, making it a valuable

source for understanding the evolution of

project management practices.

Kazman et al. (Ref. Zikria) introduce the

Architecture Tradeoff Analysis Method

(ATAM), a structured and repeatable

technique for evaluating how architectural

decisions affect critical software quality

attributes. The method enables early

identification of risks and trade-offs by

engaging stakeholders through scenario-

based analysis. ATAM helps align

architectural decisions with overarching

design goals, providing clarity and rationale

during early system development. It has been

widely adopted for its impact in

systematically assessing architectural

soundness and improving decision-making

during software planning phases.

Balaji and Murugaiyan (2023) emphasize

the importance of integrating DevOps with



JOURNAL OF EMERGING TECHNOLOGY AND DIGITAL TRANSFORMATION
ONLINE ISSN

3006-9726
PRINT ISSN

3006-9718 VOLUME . 4 ISSUE . 2 (2025)

76

https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Agile methodologies to bridge the gap

between software development and operations.

They argue that such integration enhances

development speed, fosters better

collaboration, and leads to higher software

quality. The authors highlight that while

Agile alone supports flexibility, it may

struggle with deployment and maintenance

in large-scale environments. By

incorporating DevOps from the outset,

organizations can maintain continuous

integration and Agile practices while

improving efficiency and output. The

combined approach offers a practical

framework for achieving agility in complex

systems.

Tech Buzz (2023) explores contemporary

software development methodologies with a

focus on Extreme Programming (XP), Kanban,

and the Scaled Agile Framework (SAFe),

particularly in high-stakes sectors like legal

technology. The text emphasizes timely and

reliable delivery, highlighting modern

practices such as Test-Driven Development

(TDD), pair programming, and CI/CD

pipelines. It also critiques how the dilution of

original practices can reduce their

effectiveness. Supported by numerous real-

world examples, the write-up serves as a

practical and accessible resource for both

researchers and professionals in fields like

healthcare. Notably, it forecasts continued

growth in chatbot adoption.

Rana (2023) argues that DevOps

complements rather than replaces Agile,

enhancing its value by streamlining

deployment and maintenance processes.

While Agile focuses on iterative development

and planning, DevOps addresses execution,

ensuring quicker delivery and fewer post-

release issues. The study emphasizes that

culture—more than tools—is the key to

successful implementation. Rana highlights

that continuous feedback from users drives

ongoing improvement and adaptability. The

integration of Agile and DevOps is presented

not as optional, but as essential for teams

operating in fast-paced, internet-driven

environments.

Misra and Kumar (2023) examine how

Agile methodologies foster faster software

delivery and enhance team cohesion. Their

findings, supported by three independent

surveys, suggest that short work cycles and

regular feedback sessions strengthen

interpersonal bonds and improve



JOURNAL OF EMERGING TECHNOLOGY AND DIGITAL TRANSFORMATION
ONLINE ISSN

3006-9726
PRINT ISSN

3006-9718 VOLUME . 4 ISSUE . 2 (2025)

77

https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

collaboration. In contrast, the Waterfall

model is associated with employee

disengagement and fatigue. The study also

discusses conflict resolution and productivity

within Agile teams, making it particularly

relevant for readers interested in the human

aspects of software development.

OfficeTimeline (2023) provides a historical

overview of software development

methodologies from the 1960s to the present.

The resource outlines major transitions such

as the shift from Waterfall to Agile and,

more recently, to CI/CD within DevOps. It

includes key innovations and the contextual

challenges of each era. Using visual timelines

accompanied by detailed footnotes, the

material offers valuable orientation for

educational settings and lectures. It provides

a cohesive understanding of how past

developments shape today's fragmented

development landscape.

Software Wise (2023) outlines six key

software development methodologies—Agile,

Waterfall, DevOps, Scrum, Kanban, and

SAFe—explaining how each suits different

business types such as startups, large

enterprises, regulated industries, and creative

firms. The report uses real-world examples

to describe the rationale behind choosing

specific models. It compares these methods in

terms of speed, flexibility, and governance,

offering non-technical decision-makers a

practical guide for engaging with the SDLC

process.

Intetics (2023) offers a visual timeline of

SDLC evolution from the 1950s to today.

The infographic highlights paradigm shifts,

such as the move from procedural to object-

oriented programming, and the rise of Agile,

DevOps, UX design, and cloud computing.

Each development ra is accompanied by brief

explanations, making it suitable for readers

in both business and technology fields. This

resource is a helpful and visually engaging

overview of SDLC history.

Baltes et al. (2024) emphasize the

importance of transparency in Software

Development Life Cycle (SDLC) research,

particularly regarding decisions about what

elements are included or omitted. They

advocate documenting these trade-offs using

structured matrices to make the reasoning

behind software engineering choices clear.

The authors argue that while benefits are

often highlighted in studies, the associated

costs and limitations deserve equal attention.



JOURNAL OF EMERGING TECHNOLOGY AND DIGITAL TRANSFORMATION
ONLINE ISSN

3006-9726
PRINT ISSN

3006-9718 VOLUME . 4 ISSUE . 2 (2025)

78

https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Their work calls for greater openness in

experimental design and reporting, making it

a valuable resource for conducting

responsible, well-rounded, and evidence-

based software development research.

Sharma and Patidar (2024) explore the

convergence of Agile and DevOps

methodologies, focusing on how time-

sensitive delivery demands are reshaping

traditional development practices. Their

review identifies compatibility issues between

teams, especially in terms of deployment

timelines and autonomy. By analyzing

studies across sectors, they reveal nuanced

patterns in the adoption and outcomes of

these approaches. A key argument is the

emergence of DevSecOps as the next

significant evolution, aiming to integrate

security more deeply into the development

pipeline. The authors also highlight ongoing

challenges, such as integrating renewable

and conventional systems, and call for

further research to bridge theory with real-

world application.

Prakash et al. (2024) explore how

combining Agile, DevOps, and Cloud

technologies can streamline software

Metatable1:ComparativeAnalysis

development. Through case studies, the

research demonstrates how Agile structures

develop, DevOps accelerate deployment, and

the Cloud ensures scalability. Integration

improves communication and responsiveness,

but the authors also caution about potential

mismatches in organizational culture and

tooling. This trio-model framework is

presented as a roadmap for future-ready

SDLC strategies.

Dingsøyr et al. (2025) review over 100

studies related to Agile software

development to identify current trends and

research gaps in the field. They observe that

much of the existing literature is case-specific,

lacking broader comparative analyses. The

authors advocate for longitudinal research

involving multiple teams to improve the

robustness of findings. One of the key gaps

they highlight is the limited exploration of

distributed team dynamics. They also stress

the need for a more consistent and evolving

Agile research agenda, particularly focusing

on the long-term relevance of findings and

the interplay between human and

technological factors. This work serves as a

comprehensive entry point into the state of

Agile research.



JOURNAL OF EMERGING TECHNOLOGY AND DIGITAL TRANSFORMATION
ONLINE ISSN

3006-9726
PRINT ISSN

3006-9718 VOLUME . 4 ISSUE . 2 (2025)

79

https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Author & Year Focus Methodological

Type

Key

Contributions

Limitations/Criticisms

Kazman et al.

(1999)

ATAM for

Architecture

Architecture-

focused

Identifies trade-

offs

Not a full SDM method

Beecham et al.

(2003)

QATAM

Quality

Method

Quality-centric Introduces QA

strategy tool

Limited practical

evidence

Clements &

Bass (2003)

ATAM Deep

Dive

Architecture-

focused

Guides software

design

Limited to architectural

stage

Tesoriero

(2008)

Productivity

vs Quality

Empirical Quantifies

trade-offs

Limited generalizability

(29 projects)

Highsmith
(2009)

Agile
Innovation

Thematic Agile enables
flexibility

Not empirical

Wohlin et al.

(2012)

Software

Quality

Trade-offs

Meta-analytical Categorizes

quality

dimensions

Not exclusive to SDMs

Poppendieck &

Cusumano

(2012)

Lean in SD Process-

oriented

Focus on value

delivery, waste

reduction

Needs broader tooling

Mahmoud

(2014)

Evolution

from

traditional to

agile

Evolutionary Tracks SDM

evolution

Dated reference base for

recent trends

Bass&Weber
(2015)

DevOps
Efficiency

Empirical Shows
measurable

DevOps gains

Lacks context
constraints

Fitzgerald &

Stol (2017)

Hybrid

SDMs

Hybrid Useful in

regulated

Integration complexity



JOURNAL OF EMERGING TECHNOLOGY AND DIGITAL TRANSFORMATION
ONLINE ISSN

3006-9726
PRINT ISSN

3006-9718 VOLUME . 4 ISSUE . 2 (2025)

80

https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

settings

Hardgrave

(2017)

Historical

overview of

SDMs

Descriptive General review

with developer

perspectives

No in-depth analysis of

modern methods

Amershi et al.

(2019)

AI & ML in

SD

Future-focused Explores ML

integration

Mostly speculative

Niazi et al.

(2020)

Hybrid

SDMs

Hybrid Analyzes hybrid

adoption factors

Security focus may not

generalize

Theocharis et

al. (2021)

Agile vs

Waterfall

selection

Comparative Provides

decision model

based on project

needs

Doesn't cover hybrid

models deeply

Erder & Hirsh

(2021)

Continuous

Architecture

Architecture

validation

Aligns

architecture
with needs

Mostly for large-scale

systems

Hussain &

Qamar (2022)

Agile vs

Waterfall

Comparative Highlights

Agile
dominance

Overlaps with existing

Agile-Waterfall studies

Ogundare &
Osuolale (2022)

Waterfall vs
Agile

Empirical Agile shown to
provide faster

value

Focuses only on two
methods

JSAER (2022) Strategic

Evaluation:

Agile vs

Waterfall

Comparative Provides

project-fit

guidance

Redundant with earlier

comparisons

Intetics (2023) Historical

SDM

Infographic

Timeline Visual history

from 1950s–

2020s

High-level; lacks

academic rigor



JOURNAL OF EMERGING TECHNOLOGY AND DIGITAL TRANSFORMATION
ONLINE ISSN

3006-9726
PRINT ISSN

3006-9718 VOLUME . 4 ISSUE . 2 (2025)

81

https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Zikria et al.

(2023)

Traditional

and Agile

SDLCs

Comparative Covers

pros/cons and

future scope of

SDLCs

Lacks empirical

validation

Concise

Software (2023)

Popular

SDMs

Review Covers Agile,

Scrum, SAFe,
DevOps

Lacks methodological

depth

OfficeTimeline

(2023)

SDM

Timeline

Timeline Good

visualization of

evolution

Lacks detailed analysis

Rana (2023) Agile and
DevOps

Integration

Hybrid Improves
quality and

speed

More conceptual than
practical

Technology

Buzz (2023)

Latest SDM

trends

Contemporary

Review

Highlights XP,

DevOps, Lean

in context

Informal source; lacks

academic rigor

Balaji &

Murugaiyan
(2023)

Integration

of Agile and
DevOps

Hybrid Enhances speed

& quality;

bridges lifecycle

gaps

Limited case-based

validation

Misra & Kumar

(2023)

Agile Team

Dynamics

Comparative Agile fosters

team cohesion

Traditional approaches

underexplored

Sharma &
Patidar (2024)

Legacy vs
Modern

SDMs

Systematic
Review

Charts trends in
DevOps and

Agile

May miss niche
practices

Baltes et al.

(2024)

Study Design

Trade-offs

Meta-

methodological

Advocates for

transparency in

trade-offs

Focused more on study

design than SDMs



JOURNAL OF EMERGING TECHNOLOGY AND DIGITAL TRANSFORMATION
ONLINE ISSN

3006-9726
PRINT ISSN

3006-9718 VOLUME . 4 ISSUE . 2 (2025)

82

https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Prakash et al.

(2024)

Agile, Cloud,

DevOps

SLR Analyzes

convergence of

paradigms

Scope could be

narrowed

Dingsøyr et al.

(2025)

Agile

Research
Synthesis

SLR Strong roadmap

for Agile
research

Doesn’t cover post-

Agile developments

Discussion

Table 1 offers a comprehensive synthesis of

the existing literature on Software

Development Methodologies (SDMs),

showcasing a wide spectrum of

methodological types, including comparative

analyses, systematic reviews, empirical

studies, and meta-frameworks. The studies

reviewed collectively highlight the evolution

from traditional, plan-driven approaches like

Waterfall to more adaptive methodologies

such as Agile, DevOps, and hybrid models. A

recurring theme across literature is the

growing recognition of hybrid and context-

specific SDMs, which balance structure with
flexibility to meet varying project demands.

While many contributions provide valuable

insights into trade-offs, performance

outcomes, and integration strategies, a key

limitation noted is the general lack of

empirical validation and practical case studies

for hybrid and AI-driven methods. Moreover,

although some frameworks like QATAM and

ATAM address architectural and quality

trade-offs, there remains a need for a unified,

actionable decision model that guides

practitioners in selecting or tailoring SDMs

based on dynamic project variables such as

team maturity, compliance requirements, and

technological complexity.

MetaTable2:AuthorContributionsAcross25SoftwareDevelopmentMethodologies
(2000–2025)
Methodology Ogunda

re &

Osuolal

e (2022)

Zikri

a et

al.

(202

Balaji &

Murugaiy

an (2023)

Amers

hi et

al.

(2019)

Poppendie

ck &

Cusumano

(2012)

Fitzgera

ld &

Stol

(2017)

Shar

ma &

Patid

ar

Wohli

n et

al.

(2012



JOURNAL OF EMERGING TECHNOLOGY AND DIGITAL TRANSFORMATION
ONLINE ISSN

3006-9726
PRINT ISSN

3006-9718 VOLUME . 4 ISSUE . 2 (2025)

83

https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

3) (2024

)

)

Waterfall ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘

V-Model ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘

Agile (Scrum,

XP)
✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘

Lean ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✘

Kanban ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘

Extreme

Programming
✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘

DevOps ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✘

Agile +

DevOps
✘ ✘ ✔ ✘ ✘ ✘ ✘ ✘

Hybrid

(Agile–

Waterfall)

✘ ✔ ✘ ✘ ✘ ✔ ✘ ✘

SAFe (Scaled
Agile)

✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘

Crystal ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘

Feature-

Driven
Development

✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘

Rapid
Application

Development

✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘

Spiral Model ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘

DSDM ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘

ATAM ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔



JOURNAL OF EMERGING TECHNOLOGY AND DIGITAL TRANSFORMATION
ONLINE ISSN

3006-9726
PRINT ISSN

3006-9718 VOLUME . 4 ISSUE . 2 (2025)

84

https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

AI-Driven

SDLC
✘ ✔ ✘ ✔ ✘ ✘ ✘ ✘

ML-Ops ✘ ✘ ✘ ✔ ✘ ✘ ✘ ✘

Continuous

Software
Engineering

✘ ✘ ✘ ✔ ✘ ✘ ✘ ✘

Cloud-Native

Development
✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘

Low-Code /

No-Code
✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘

Test-Driven

Development
(TDD)

✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘

Behavior-

Driven

Development

✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘

Secure

DevOps

(DevSecOps)

✘ ✘ ✘ ✔ ✘ ✘ ✘ ✘

Design

Thinking
✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘

Discussion

Table 2 presents a comparative analysis of 25

software development methodologies,

focusing on their core characteristics,

strengths, and weaknesses. The analysis

clearly illustrates that no single methodology

universally fits all project types; instead, each

has trade-offs that make it suitable depending

on the project context. Traditional models

like Waterfall and V-Model are praised for

their structure and documentation but are



JOURNAL OF EMERGING TECHNOLOGY AND DIGITAL TRANSFORMATION
ONLINE ISSN

3006-9726
PRINT ISSN

3006-9718 VOLUME . 4 ISSUE . 2 (2025)

85

https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

inflexible in the face of change. Agile-based

methods such as Scrum, XP, and SAFe offer

adaptability and faster feedback but often

require mature, collaborative teams to

function effectively. Hybrid approaches like

Agile-Waterfall and SAFe attempt to

reconcile control with flexibility, making

them attractive for large or regulated

projects. Meanwhile, modern innovations

such as DevOps, AI-driven SDLC, and low-

code platforms emphasize automation,

scalability, and faster delivery but often

demand significant infrastructure changes

and raise governance or ethical concerns.

Overall, the table underscores the necessity

for strategic SDM selection tailored to a

project’s size, complexity, regulatory

demands, and team capabilities.

2. Critical Analysis

The evolution of software development

methodologies is a direct response to

organizational demands for faster delivery,

improved product quality, and adaptable

processes to meet dynamic requirements.

Organizations increasingly embrace hybrid

development models, which integrate

structured control mechanisms with iterative,

agile practices to support flexibility and

responsiveness. This section organizes the

research into four thematic areas, critically

evaluating both practical implications and

theoretical contributions. In the future,

software development is expected to undergo

major transformations through the

integration of artificial intelligence (AI),

quantum computing, and cognitive science.

These technologies will allow organizations

to make real-time, intelligent decisions,

detect and resolve issues proactively, and

model human problem-solving. Development

environments shaped by cognitive behavior

and user feedback could become autonomous,

adaptive, and self-improving—leading to

more efficient, secure, and customer-focused

systems.

2.1 Modern Methodological Evolution and

Shifts in Paradigms

Software development initially relied on

structured models such as the Waterfall

model, characterized by linear planning,

sequential phases, and strict documentation

(Royce, 1970). However, several scholars

have criticized traditional models for their

rigidity and inability to adapt to changes

during development (Mahmoud, 2014;

Ogundare & Osuolale, 2022).



JOURNAL OF EMERGING TECHNOLOGY AND DIGITAL TRANSFORMATION
ONLINE ISSN

3006-9726
PRINT ISSN

3006-9718 VOLUME . 4 ISSUE . 2 (2025)

86

https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

In contrast, the emergence of Agile

methodologies in the early 2000s introduced

iterative development, customer

collaboration, and continuous delivery (Beck

et al., 2001; Highsmith, 2009). Agile shifted

focus toward adaptability and shortened

feedback loops, enabling faster responses to

customer needs and evolving project

requirements. Sharma and Patidar (2024)

further emphasized Agile’s capacity to

support continuous integration and improve
inter-team coordination.

According to Dingsøyr et al. (2012, 2025),

Agile has moved from niche applications in

startups to widespread adoption in large

enterprises. Their research demonstrates that

Agile not only reshaped development

processes but also redefined team structures

and cultural dynamics, particularly in high-

velocity environments.

Fig2: SDM Year Wise

3.2 Trade-Offs and Methodology Recent Challenges

Agile and traditional models both have

strengths and limitations. Tesoriero (2008)

and Wohlin, Fors, and Wallin (2012)

highlight ongoing tensions between rapid

delivery and quality assurance. Agile often

reduces emphasis on documentation and

structured testing, while Waterfall

emphasizes control and predictability but

lacks agility in fast-changing environments.

Theocharis et al. (2021) argue for context-

aware methodology selection based on

factors like team expertise, risk, and



JOURNAL OF EMERGING TECHNOLOGY AND DIGITAL TRANSFORMATION
ONLINE ISSN

3006-9726
PRINT ISSN

3006-9718 VOLUME . 4 ISSUE . 2 (2025)

87

https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

stakeholder volatility. Baltes et al. (2024)

introduce a structured framework for

documenting trade-offs, enabling

transparency and informed architectural

decisions. Their model enhances decision-

making by evaluating the relationship
between benefits and costs.

Furthermore, Hussain and Qamar (2022)

warn against uncritical adoption of popular

methods. They advocate customized models

tailored to the project's regulatory demands,

stakeholder needs, and technological

constraints. This perspective supports the
rising trend of hybrid or

mixed-method approaches, especially in complex or compliance-heavy environments.

Fig 3 Challenges

3.3 Recent Hybrid and Integrated Methodologies

The inherent limitations of singular software

development methodologies have led to the

increasing adoption of hybrid approaches,

particularly in projects that demand both

structured oversight and iterative flexibility.

Hybrid Agile methods combine traditional

development practices with agile principles

to accommodate the complexity of large-scale

systems requiring both control and

adaptability (Fitzgerald & Stol, 2017; Niazi et

al., 2020). These approaches are especially

beneficial when neither a fully Agile nor a



JOURNAL OF EMERGING TECHNOLOGY AND DIGITAL TRANSFORMATION
ONLINE ISSN

3006-9726
PRINT ISSN

3006-9718 VOLUME . 4 ISSUE . 2 (2025)

88

https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

pure Waterfall model proves effective in
isolation.

The evolution of Agile practices has led to

further integration with DevOps

methodologies, enabling continuous

deployment and automation while preserving

Agile's responsiveness. Balaji and

Murugaiyan (2023), along with Rana (2023),

demonstrate that incorporating DevOps

practices—such as automation, continuous

integration, and infrastructure as code—into

Agile environments enhances delivery speed

and improves fault response capabilities.

Rather than compromising between

approaches, these integrations aim to amplify

their strengths. The synergy between Agile

and DevOps results in accelerated workflows

and heightened adaptability. Prakash et al.

(2024) suggest that the inclusion of Cloud-

native technologies creates a unified system

where Agile, DevOps, and Cloud practices

converge. This integration supports scalable,

rapid development by overcoming traditional

operational bottlenecks and reinforcing

Agile’s foundational values.



JOURNAL OF EMERGING TECHNOLOGY AND DIGITAL TRANSFORMATION
ONLINE ISSN

3006-9726
PRINT ISSN

3006-9718 VOLUME . 4 ISSUE . 2 (2025)

89

https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Fig 4 : Hybrid Technologies

3.4 Innovation, Quality, and Architectural

Trade-offs

Software development methodology (SDM)

professionals must prepare for an

increasingly complex landscape in which

system architectures are distributed,

intelligent, and constantly evolving.

Forecasting future trends requires

integration of automated processes,

intelligent systems, and predictive analytics

to manage architectural, quality, and

performance trade-offs in real-time (Kazman

et al., 1999; Clements & Bass, 2003; Erder &

Hirsh, 2021).

One proposed solution is the Quality

Assurance Tradeoff Analysis Method



JOURNAL OF EMERGING TECHNOLOGY AND DIGITAL TRANSFORMATION
ONLINE ISSN

3006-9726
PRINT ISSN

3006-9718 VOLUME . 4 ISSUE . 2 (2025)

90

https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

(QATAM), which helps evaluate the

implications of various QA strategies on

project outcomes (Beecham et al., 2003).

QATAM supports data-informed decision-

making by comparing the cost, impact, and

timing of different quality assurance activities.

However, Wohlin et al. (2012) caution that

organizations often overlook

how this quality practices align with their

broader development frameworks. A

structured trade-off analysis—using tools

such as ATAM or QATAM—provides a

strategic approach to quality planning,

particularly in high-risk and large-scale

projects.

Fig 5 : QA tradeoffs

3. AI, Future Trends, and Methodological Disruption

Artificial Intelligence (AI) is poised to

disrupt software development methodologies

(SDMs) by moving beyond simple

automation tools to become integrated



JOURNAL OF EMERGING TECHNOLOGY AND DIGITAL TRANSFORMATION
ONLINE ISSN

3006-9726
PRINT ISSN

3006-9718 VOLUME . 4 ISSUE . 2 (2025)

91

https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

decision-making agents. According to

Amershi et al. (2019), AI and machine

learning (ML) are rapidly evolving into core

SDM components that contribute to program

design, automated testing, and intelligent

decision support. These capabilities enable

software teams to build, test, and adjust code

with higher precision and adaptability.

Future SDMs must accommodate intelligent,

self-adaptive systems capable of interpreting

complex data streams and providing real-

time recommendations. Zikria et al. (2023)

note that the increasing complexity and

distributed nature of software systems will

demand adaptive learning architectures with

dynamic feedback and automated risk

mitigation. This implies a methodological

shift toward cognitively inspired

development environments, where AI mimics

human behavior and feedback loops to self-

improve continuously.

Fig 6 : AI based SDLC



JOURNAL OF EMERGING TECHNOLOGY AND DIGITAL TRANSFORMATION
ONLINE ISSN

3006-9726
PRINT ISSN

3006-9718 VOLUME . 4 ISSUE . 2 (2025)

92

https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

4. Conclusion and Recommendations

The evolution of Software Development

Methodologies (SDMs) reflects a dynamic

shift from rigid, sequential approaches like

Waterfall and V-Model toward more

iterative and flexible models such as Agile.

As software systems become more complex

and organizations demand faster delivery,

hybrid SDMs have emerged as an optimal

solution—merging Agile’s responsiveness

with the structure of traditional methodologies.

Modern frameworks such as DevOps and

Scrumban exemplify this trend by enabling

teams to maintain quality, compliance, and

speed simultaneously. However, SDMs are

not universally applicable; each approach has

its contextual strengths and limitations.

Waterfall remains suitable for stable,

regulated environments, while Agile thrives in

dynamic, iterative development cycles—

provided there is high team maturity and

communication. Hybrid methodologies offer a

balanced path, supporting adaptability without

losing oversight.

 Emerging trends such as AI integration,
CI/CD pipelines, and cloud-native

development are further reshaping SDM
frameworks.

 Future SDMs must be modular,
intelligent, and predictive—allowing
organizations to customize processes,
automate operations, and enhance

decision-making accuracy.

 strategic selection and continuous
refinement of methodologies will be
essential for aligning SDM practices with
specific project goals, team structures,

and resource constraints.

5.1 Recommendations for Practitioners

Organizations should prioritize hybrid SDMs

that combine the adaptability of Agile with

the governance and documentation strengths

of traditional models. Integrating DevOps

into Agile practices can accelerate

development cycles without compromising

product quality. To remain competitive,

organizations must invest in ongoing

training and promote a culture of continuous

improvement (e.g., Kaizen). Automated AI-

supported tools should be implemented for

testing, deployment, and feedback collection

to reduce human error and accelerate

iterations.



JOURNAL OF EMERGING TECHNOLOGY AND DIGITAL TRANSFORMATION
ONLINE ISSN

3006-9726
PRINT ISSN

3006-9718 VOLUME . 4 ISSUE . 2 (2025)

93

https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Before selecting an SDM, practitioners

should analyze project-specific requirements,

such as regulatory compliance, technical

complexity, and team capabilities. For

projects requiring extensive documentation

and regulatory alignment, Waterfall or

DevOps may be more appropriate than Agile.

Moreover, successful implementation

depends on strong leadership, effective

communication channels, and empowered

teams with decision-making autonomy and

access to innovation.

5.2 Recommendations for Researchers

There is a critical need for longitudinal and

empirical studies focused on hybrid SDMs.

Researchers should explore how Agile

principles function when embedded within

traditional structures, especially in high-

stakes or regulated industries. Studies should

investigate how AI-driven tools influence

project success, quality assurance, and risk

mitigation. Special attention should be paid

to low-code/no-code platforms, examining

their impact on accessibility, scalability, and

SDM compatibility.

Future research must adopt time-series

analysis to evaluate long-term SDM

performance in terms of delivery speed,

customer satisfaction, and team cohesion.

Additionally, a comprehensive framework for

hybrid SDMs should be developed to guide

organizations in selecting and customizing

methodologies that align with their specific

operational needs, regulatory environments,

and strategic objectives.

5.3 Final Thoughts

SDM development is a continuous and

evolving effort aimed at optimizing how

software is designed, delivered, and

maintained. With advancements in AI,

automation, and cloud computing, the next

generation of SDMs must be adaptive,

predictive, and human-centric. The success of

any SDM lies in its alignment with

organizational goals, team capabilities, and

external demands. This review provides both

a strategic outlook and a practical roadmap

for organizations and researchers navigating

the future of software development.

6. REFERENCES

Zikria, Y. B., et al. (2023). A Comprehensive

Review of Software Development Life Cycle

Methodologies: gPros, Cons, and Future

Directions. ResearchGate.

https://www.researchgate.net/publication/3

79652502

http://www.researchgate.net/publication/3


JOURNAL OF EMERGING TECHNOLOGY AND DIGITAL TRANSFORMATION
ONLINE ISSN

3006-9726
PRINT ISSN

3006-9718 VOLUME . 4 ISSUE . 2 (2025)

94

https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Balaji, S., & Murugaiyan, M. S. (2023).

DevOps Enabled Agile: Combining Agile and

DevOps Methodologies for Software

Development. ResearchGate.

https://www.researchgate.net/publication/3

65970960

3. Ogundare, S., & Osuolale, O. (2022).

A Comparative Case Study of Waterfall and

Agile vManagement. SAR Journal,
5(1), 52–62.

https://www.sarjournal.com/content/51/SA

RJournalMarch2022_52_62.pdf

Hardgrave, B. C. (2017). A Study of Software

Development Methodologies. University of

Arkansas.

https://scholarworks.uark.edu/cgi/viewcont

ent.cgi?article=1105&context=csceuht

Baltes, S., et al. (2024). Communicating

Study Design Trade-offs in Software

Engineering. ACM Transactions on Software

Engineering and Methodology.

https://dl.acm.org/doi/10.1145/3649598

Technology Buzz. (2023). Software

Development Methodologies and Trends

2023–24. Medium. https://technlogy-

buzz.medium.com/software-development-

methodologies-and- trends-2023-24-

1fd7dd0335e1

Theocharis, G., et al. (2021). Agile versus

Waterfall Project Management: Decision

Model for Selecting the Appropriate

Approach. Procedia Computer Science, 181,

231–238.

https://www.sciencedirect.com/science/artic

le/pii/S1877050921002702

8. Mahmoud, Q. H. (2014). A

Comparative Overview of the Evolution of
Software Development Models.

ResearchGate.

https://www.researchgate.net/publication/2

67711880

9. Niazi, M., et al. (2020). An Insight

into Hybrid Agile Software Development

Approaches. JATIT, 102(2), 47–54.

https://www.jatit.org/volumes/Vol102No2/

6Vol102No2.pdf

10. Hussain, S., & Qamar, U. (2022). A

Comparative Study of Agile and Waterfall

Software Development Methodologies.

ResearchGate.

https://www.researchgate.net/publication/3

61872079

11. Sharma, M., & Patidar, N. (2024). A

Systematic Review of Software Development

Methodologies and Their Trends.
JRTCSE.

http://www.researchgate.net/publication/3
http://www.sarjournal.com/content/51/SA
http://www.sciencedirect.com/science/artic
http://www.researchgate.net/publication/2
http://www.jatit.org/volumes/Vol102No2/
http://www.researchgate.net/publication/3


JOURNAL OF EMERGING TECHNOLOGY AND DIGITAL TRANSFORMATION
ONLINE ISSN

3006-9726
PRINT ISSN

3006-9718 VOLUME . 4 ISSUE . 2 (2025)

95

https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

https://jrtcse.com/index.php/home/article/
view/JRTCSE.2024.5.7

12. Tesoriero, R. (2008). Trade-offs

Between Productivity and Quality in

Selecting Software Development Practices.

ResearchGate.

https://www.researchgate.net/publication/3

248028

13. Dingsøyr, T., et al. (2025). A

Systematic Literature Review of Agile

Software Development: State of Research and

Future Directions. Information & Software

Technology.

https://www.sciencedirect.com/science/artic

le/abs/pii/S0950584925000667

14. Rana, A. (2023). Integrating DevOps

with Agile and Other Software Development

Methodologies. ResearchGate.

https://www.researchgate.net/publication/3

82852396

15. Misra, S. C., & Kumar, V. (2023).

Structured Software Development Versus

Agile Software Development. Springer.

https://link.springer.com/article/10.1007/s

13198-023-01958-5

16. OfficeTimeline. (2023). Software
Development Methodologies Timeline.

https://www.officetimeline.com/blog/softwa
re-development-methodologies-timeline

17. Wohlin, C., et al. (2012). Software

Quality Trade-offs: A Systematic Map.

Information & Software Technology,
54(7), 743–758.

https://www.sciencedirect.com/science/artic

le/abs/pii/S0950584912000195

18. Concise Software. (2023). The Most

Common Software Development

Methodologies in 2023.

https://concisesoftware.com/blog/th

e-most-common-software-development-

methodologies-in-2023

19. Prakash, P., et al. (2024). A

Systematic Literature Review on Agile,

Cloud, and DevOps Integration.

ACM/Elsevier.

https://dl.acm.org/doi/10.1016/j.infsof.2024.

107569

20. JSAER. (2022). Comparing Agile and

Waterfall Methodologies: A Strategic

Evaluation. JSAER, 9(9), 108–111.

https://jsaer.com/download/vol-9-iss-9-

2022/JSAER2022-9-9- 108-111.pdf

21. Intetics. (2023). A Brief History of
Software Development Methodologies.

http://www.researchgate.net/publication/3
http://www.sciencedirect.com/science/artic
http://www.researchgate.net/publication/3
http://www.officetimeline.com/blog/softwa
http://www.sciencedirect.com/science/artic


JOURNAL OF EMERGING TECHNOLOGY AND DIGITAL TRANSFORMATION
ONLINE ISSN

3006-9726
PRINT ISSN

3006-9718 VOLUME . 4 ISSUE . 2 (2025)

96

https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

https://intetics.com/blog/a-brief-history-of-
software-development-methodologies

22. Beecham, S., et al. (2003). Software

Process Improvement Initiatives Based on

Quality Assurance Strategies: A QATAM

Pilot Application. ResearchGate.

https://www.researchgate.net/publication/2

21045890

23. Kazman, R., et al. (1999). Architecture

Tradeoff Analysis Method (ATAM):

Evaluating Software Architectures.

SEI/CMU.

https://www.geeksforgeeks.org/architecture

-tradeoff- analysis-method-atam

24. Clements, P., & Bass, L. (2003).

Quality Trade-off Analysis: The ATAM

Method. GlobalSpec.

https://www.globalspec.com/reference/3945
1/203279

25. Erder, M., & Hirsh, P. (2021).

Validating the Architecture: A Brief

Overview of the ArchitectureTradeoff

Analysis Method.

Continuous Architecture.

https://www.sciencedirect.com/topics/comp

uter-science/architecture-tradeoff-analysis-

method

26. Highsmith, J. (2009). Agile Software

Development: The Business of Innovation.

Addison- Wesley.

27. Bass, L., & Weber, I. (2015). The

Impact of DevOps on Software Development

Efficiency. ACM Queue.

28. Fitzgerald, B., & Stol, K.-J. (2017).

Hybrid Software Development Approaches:

Merging Agile and Waterfall. Journal of

Systems and Software, 133, 68–82.

29. Poppendieck, M., & Cusumano, M.

(2012). The Role of Lean Principles in

Software Development. IEEE Software, 29(5),

26–32.

30. Amershi, S., et al. (2019). Future

Directions in Software Development

Methodologies: Embracing AI and Machine

Learning. Communications of the ACM,

62(9), 62–71.

31. Royce, W. W. (1970). Managing the

development of large software systems.

Proceedings of IEEE WESCON.

32. Beck, K., et al. (2001). Manifesto for

Agile Software Development.

33. Dingsøyr, T., Nerur, S., Balijepally, V.,

& Moe, N. B. (2012). A decade of agile

methodologies: Towards explaining agile

http://www.researchgate.net/publication/2
http://www.geeksforgeeks.org/architecture
http://www.globalspec.com/reference/3945
http://www.sciencedirect.com/topics/comp


JOURNAL OF EMERGING TECHNOLOGY AND DIGITAL TRANSFORMATION
ONLINE ISSN

3006-9726
PRINT ISSN

3006-9718 VOLUME . 4 ISSUE . 2 (2025)

97

https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

software development. Journal of Systems
and Software, 85(6), 1213–1221.

34. Jalali, S., & Wohlin, C. (2012). Agile

practices in global software engineering—A

systematic map. 2012 International

Conference on Global Software Engineering.

35. Fitzgerald, B., & Stol, K. J. (2017).

Continuous software engineering: A roadmap

and agenda. Journal of Systems and Software,

123, 176–189.



98

https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

JOURNAL OF EMERGING TECHNOLOGY AND DIGITAL TRANSFORMATION
ONLINE ISSN

3006-9726
PRINT ISSN

3006-9718 VOLUME . 4 ISSUE . 2 (2025)


	JOURNAL OF EMERGING TECHNOLOGY AND DIGITAL TRANSFO
	THE EVOLUTION OF SDMS: TRENDS, TRADE-OFFS, AND FUT
	Abdulrehman Arif
	a
	qasi
	Ammad Hussain
	ABABSTRACT:
	Introduction
	Fig1 Evolutions of SDM

	Metatable1:ComparativeAnalysis
	Discussion

	MetaTable2:AuthorContributionsAcross25SoftwareDeve
	Discussion
	2.Critical Analysis
	2.1Modern Methodological Evolution and Shifts in Para
	Fig2: SDM Year Wise
	Fig 3 Challenges
	Fig 4 : Hybrid Technologies
	Fig 5 : QA tradeoffs
	Fig 6 : AI based SDLC
	5.3Final Thoughts


	JOURNAL OF EMERGING TECHNOLOGY AND DIGITAL TRANSFO

