
https://journalofemergingtechnologyanddigitaltransformation.com Muhammad Azam*

Journal of Emerging Technology and Digital
Transformation
Online ISSN

3006-9726
Print ISSN

3006-9718
Volume . 4 Issue . 1 (2025)

24

EXPLORING ADVANCED I/O TECHNIQUES IN MODERN
OPERATING SYSTEMS

Dure Zara
Department of Computer Science, University of Southern Punjab Multan
durezahra6235@gmail.com
Shahreen Zafar
Department of Computer Science, University of Southern Punjab Multan
shreenzafar150@gmail.com
Fatima Hafeez
Department of Computer Science, University of Southern Punjab Multan
fatimahafeez18aug@gmail.com
*Muhammad Azam
Department of Computer Science, University of Southern Punjab Multan
muhammadazam.lashari@gmail.com
Muhammad Zeeshan Haider Ali
Department of Computer Science, University of Southern Punjab Multan
ali.zeeshan04@gmail.com

RECEIVED
07January 2025

ACCEPTED
21 January 2025

PUBLISHED
28January 2025

ABSTRACT
Input/Output (I/O) operations are fundamental to operating system performance, especially in data-intensive and real-
time applications. This paper provides a comparative analysis of advanced I/O techniques implemented in three major
operating systems: Windows, Linux, and Solaris. By exploring mechanisms such as synchronous and asynchronous I/O,
memory mapped I/O, direct I/O, kernel bypass techniques, and I/O scheduling algorithms, the study identifies the
performance trade-offs and architectural differences between these platforms. Each operating system employs distinct
approaches to optimize I/O throughput, latency, and CPU utilization depending on system design and intended use cases.
The paper further highlights the suitability of each OS for various environments, such as enterprise systems, web servers,
and high-performance computing. Through structured comparison tables and referenced technical insights, the research
offers a clear understanding of how I/O is handled across different systems, guiding developers and system architects in
selecting the appropriate platform for their needs.

Keywords: I/O performance, asynchronous I/O, memory mapped I/O, Windows, Linux, Solaris, operating systems

mailto:durezahra6235@gmail.com
mailto:shreenzafar150@gmail.com
mailto:fatimahafeez18aug@gmail.com
mailto:muhammadazam.lashari@gmail.com
mailto:ali.zeeshan04@gmail.com


Corresponding Author*:muhammadazam.lashari@gmail.com

25

Introduction
Input/Output (I/O) operations are a core
component of any operating system (OS),
enabling communication between the
system and external devices such as storage
drives, network interfaces, and user input
devices. The efficiency of I/O techniques
directly affects system performance,
responsiveness, and the overall user
experience. With different operating
systems designed for various use cases,
each OS implements distinct I/O methods
to handle data transfers, manage devices,
and optimize system resources.
This comparative analysis explores the I/O
techniques employed by multiple operating
systems, including Linux, Windows,
macOS, Unix (BSD), Android, and IBM
z/OS. Each OS uses a range of methods to
address specific requirements in different
environments, from general-purpose
desktop use to high-performance
computing or enterprise systems. The
purpose of this study is to evaluate and
compare the I/O techniques of these
operating systems, providing a detailed
overview of their strengths and best-use
scenarios. By understanding these
techniques, system architects and
developers can make informed decisions
about which OS and I/O method best suits
their application requirements, whether for
optimized data throughput, responsiveness,
or resource management.
Windows I/O Techniques
Input/Output (I/O) operations in Windows
operating systems are essential for
managing data transfers between the
system and external devices or memory
locations. The operating system employs
various I/O techniques to optimize system
performance and resource utilization. This
section will provide a detailed examination
of several I/O techniques used in Windows,
explaining their functions, advantages,
disadvantages, and real-world applications.
Synchronous I/O is one of the most basic
I/O techniques where the calling thread
must wait for the I/O operation to
complete before it proceeds to the next task.
This method is straightforward to
implement and easy to understand, making

it suitable for simple applications (Dinari,
2020). However, it often causes
performance bottlenecks, as the calling
thread remains blocked while waiting for
the operation to finish, leading to
inefficiencies, especially in systems that
require high throughput (Awan, 2022). For
example, applications handling small data
transfers or requiring minimal processing
may benefit from this technique, but high-
volume data applications will struggle with
its limitations.
On the other hand, Asynchronous I/O
offers a more advanced approach by
allowing the calling thread to initiate an
I/O operation and continue with other
tasks while the operation completes in the
background (Pestka et al., 2024). Once the
I/O operation is finished, the system
notifies the calling thread via a callback
function or event, which improves
responsiveness and prevents thread
blocking. This technique is particularly
beneficial for high-performance applications,
such as network servers and real-time
systems (Bhutani & Shinde, 2024).
However, it is more complex to implement,
requiring proper handling of callbacks and
events, which can introduce additional
complexity in the development process.
Memory-Mapped I/O is another
technique used in Windows to enhance
performance by mapping physical memory
addresses directly to I/O device registers.
This method allows the CPU to directly
access device memory as though it were
regular system memory, bypassing the
traditional I/O instructions and thus
minimizing overhead (Mirzoev et al., 2025).
It enables high-speed data transfers,
making it particularly useful in systems
that require fast access to hardware, such as
embedded systems or high-performance
applications. However, managing memory-
mapped I/O requires careful attention to
avoid memory conflicts or mismanagement,
which can lead to system instability (Kim et
al., 2020).
Kernel Bypass I/O is an advanced
technique where user-space applications
can access hardware resources directly,

mailto:muhammadazam.lashari@gmail.com


Corresponding Author*:muhammadazam.lashari@gmail.com

26

bypassing the operating system's kernel
I/O stack. This reduces the I/O overhead
and significantly enhances performance,
particularly in high-performance
computing (HPC) environments and
systems that require low-latency operations
(Li et al., 2023). By allowing direct access
to storage or networking devices, this
technique eliminates unnecessary kernel-
level interventions, which can improve
throughput and reduce processing times.
For instance, RDMA (Remote Direct
Memory Access) leverages this concept to
enable direct memory access between
networked systems, enhancing data
transfer efficiency (Jo, 2023).
Zero-Copy I/O is a technique that reduces
CPU utilization and enhances I/O
performance by transferring data directly
from the I/O device to the application’s
memory without intermediate buffering
(Raghavan et al., 2021). This method
eliminates the need for copying data
between buffers in memory, reducing both
CPU load and system overhead. It is
especially useful in data-intensive
applications, such as large-scale databases
or video streaming systems, where high
throughput and minimal latency are critical.
However, for this technique to be effective,
it requires compatible hardware and
operating systems that support direct
memory access (Mutlu, 2020).
Lastly, In-memory File Systems store
data entirely in memory, providing
extremely fast data access and retrieval (Gu
et al., 2021). This approach is highly
beneficial for real-time applications that
need to process and access large amounts of
data quickly, such as in scientific computing
or financial analysis systems. However, its
main limitation lies in the availability of
memory: as data grows, the system’s
performance can degrade due to memory
constraints, making it unsuitable for large
data sets (Gu et al., 2021).
In summary, Windows I/O techniques each
offer unique advantages depending on the
application’s requirements. Synchronous
I/O is simple but can cause bottlenecks,
while asynchronous and memory-mapped
I/O provide more efficient handling of

high-volume operations. Techniques like
kernel bypass and zero-copy I/O further
enhance performance by reducing system
overhead. Asynchronous operations,
memory management techniques, and real-
time systems in Windows can benefit from
these advanced I/O methods, which are
integral to ensuring efficient system
performance across various use cases.

mailto:muhammadazam.lashari@gmail.com


Corresponding Author*:muhammadazam.lashari@gmail.com

27

Comparison Table of I/O Technique Table in Windows
Technique Description Advantages Disadvantage

s
Use Cases Reference

s
I/O Request
Packets (IRPs)

Data structure
used by
Windows to
manage I/O
operations,
including the
type of
operation (e.g.,
read, write),
the target
device, and
operation
status. Passed
through a
stack of
drivers for
processing.

Allows
standardized
handling of
I/O requests
across
drivers-
Supports
efficient
device
interaction-
Enhances
system
stability

- Can
introduce
overhead due
to multiple
driver layers-
May be slower
than direct
I/O for simple
operations

- General I/O
operations
across
different
device types-
File system
operations

Microsoft,
n.d.; Yu &
Lou, 2013

Asynchronous
I/O
(Overlapped
I/O)

Enables non-
blocking I/O
operations
where the
application
does not wait
for the
operation to
complete. Uses
the
OVERLAPPE
D structure for
non-blocking
calls.

- Non-
blocking,
allowing
applications
to continue
processing-
Improves
overall
system
efficiency-
Can handle
multiple I/O
operations
concurrently

- Requires
careful
management
of resources-
More complex
programming
due to
asynchronous
nature

- Network
operations-
Disk I/O
operations-
Applications
requiring
high
responsivenes
s

Microsoft,
n.d.

I/O
Completion
Ports (IOCP)

Used to
manage
asynchronous
I/O efficiently
in a multi-
threaded
environment.
Provides an
optimized
threading
model for
handling many

- Efficient
for high-
performance
applications-
Scales well
with
multiple
processors-
Reduces
overhead by
using thread
pools

- Complex to
implement-
Requires
careful
management
of thread pool
sizes and I/O
completion
handling

- High-
performance
servers-
Scalable
applications
with many
concurrent
I/O requests

Microsoft,
n.d.

mailto:muhammadazam.lashari@gmail.com


Corresponding Author*:muhammadazam.lashari@gmail.com

28

concurrent
I/O requests.

Device Drivers
and Stacks

Windows uses
a layered
model for
device drivers,
with each layer
performing
specific
functions like
hardware
abstraction,
protocol
handling, and
file system
operations.

- Modular
and flexible-
Allows easy
updates to
individual
driver
layers-
Enhances
stability

- Can be
complex to
manage for
large systems-
Potential for
performance
bottlenecks if
driver layers
are not
optimized

- Hardware-
specific tasks-
I/O
management
between OS
and
peripheral
devices

Chawan,
2017

Plug and Play
(PnP)

Windows’
system for
dynamically
detecting
hardware and
managing its
installation
and
configuration.

- Simplifies
hardware
management
-
Automaticall
y detects and
configures
new devices-
Improves
user
experience

- Sometimes
struggles with
compatibility
across
different
hardware-
May require
rebooting or
reinitialization
for full
functionality

- Consumer
electronics-
Personal
computer
peripherals-
Network
devices

Microsoft,
n.d.

Power
Management

Windows'
mechanism to
control power
usage by
devices,
including
turning
devices off
when not in
use and
managing
energy
consumption
in idle states.

- Enhances
energy
efficiency-
Prolongs
hardware
lifespan-
Provides a
more eco-
friendly
solution

- Can
introduce
latency when
reactivating
devices- May
require
manual
configuration
for certain
devices

- Laptops and
mobile
devices-
Devices in
low-power
environments
- Server farms

Microsoft,
n.d.

Direct
Memory
Access (DMA)

Allows
peripherals to
directly access
system
memory
without
involving the

- Increases
data transfer
rate- Frees
CPU
resources for
other tasks-
Reduces

- Requires
specific
hardware
support- May
require careful
synchronizatio
n to avoid data

- High-speed
I/O
operations
like disk
access,
network
transfers, or

Microsoft,
n.d.

mailto:muhammadazam.lashari@gmail.com


Corresponding Author*:muhammadazam.lashari@gmail.com

29

CPU,
enhancing data
transfer speed.

system
latency

corruption multimedia
streaming

Fast I/O A method
allowing
specific fast
operations to
bypass the full
I/O processing
path, directly
accessing
device drivers
for quicker
data
processing.

- Reduces
overhead for
specific I/O
operations-
Increases
performance
for
operations
with known
patterns-
Optimized
for rapid
data access

- Limited use
cases-
Requires
hardware and
software that
can support
direct access
without
compromising
safety

- High-
performance
systems-
Applications
with fast data
access
requirements

Microsoft,
n.d.

Driver Stacks Layered
structure of
device drivers
in Windows,
each layer
responsible for
different
aspects such as
hardware
abstraction,
protocol
handling, and
file system
communicatio
n.

- Modular
structure for
flexible
driver
development
- Easier
updates for
individual
layers-
Enhances
system
stability

- Can be
complex to
configure and
manage for
large systems-
Requires
efficient driver
design to
avoid
bottlenecks

- Hardware
interface
management-
Device
communicatio
n tasks

Microsoft,
n.d.

Windows
Kernel-Mode
I/O Manager

Manages I/O
requests and
dispatches
them to
appropriate
device drivers.
Acts as an
intermediary
between the
I/O subsystem
and drivers.

- Provides
efficient
management
of device
requests-
Enhances
device
interaction
and stability

- Can cause
performance
overhead in
high-load
environments

- I/O
handling
across device
types

Microsoft,
n.d.

I/O
Completion
Mechanisms

Manages
asynchronous
I/O requests
using
structures that
enable efficient

- Improves
efficiency of
asynchronou
s operations-
Facilitates
thread

- Requires
proper
synchronizatio
n and thread
pool
management

- Applications
requiring
efficient
handling of
numerous
concurrent

Microsoft,
n.d.

mailto:muhammadazam.lashari@gmail.com


Corresponding Author*:muhammadazam.lashari@gmail.com

30

notification
once an I/O
operation
completes.

management I/O requests

I/O Request
Structures

Data structure
management
for handling
various I/O
request types
within the
system,
supporting
both kernel
and user-mode
requests.

- Enables
efficient
resource
management
- Reduces
operational
overhead

- Can be
overly
complex for
simple I/O
operations

- System-
level resource
handling-
Complex I/O
request
scenarios

Microsoft,
n.d.

Synchronizatio
n Mechanisms

Synchronizatio
n tools and
protocols that
manage
concurrent
I/O
operations,
ensuring that
data integrity
is maintained
when
accessing
shared
resources.

- Ensures
data
consistency-
Enables safe
concurrent
access

- Requires
proper lock
management
to avoid
deadlocks

- Multi-
threaded
applications-
High-
concurrency
environments

Microsoft,
n.d.

Direct I/O
(Memory-
Mapped I/O)

Allows
applications to
directly read
from and write
to device
memory
without going
through the
system’s
standard I/O
handling
paths,
enhancing
performance.

- Reduces
system
overhead-
Increases
data access
speed

- Limited use
cases-
Requires
hardware-
specific
support

- High-
performance
applications
where direct
memory
access is
feasible

Microsoft,
n.d.

Windows
Performance
Analysis Tools

Tools
provided to
analyze and
optimize I/O
performance

- Enables
performance
tuning-
Assists in
detecting

- May require
advanced
technical
knowledge to
interpret

- Performance
optimization
for servers,
databases,
and I/O-

Microsoft,
n.d.

mailto:muhammadazam.lashari@gmail.com


Corresponding Author*:muhammadazam.lashari@gmail.com

31

by identifying
bottlenecks in
I/O
operations.

inefficiencies results heavy
applications

Linux: I/O Techniques Used
Linux, as an open-source operating system,
employs several techniques for managing
Input/Output (I/O) operations. These
techniques are designed to enhance the
performance of various applications, ensuring
efficient resource utilization and optimized

data transfer across different system
component. Linux supports both
synchronous and asynchronous I/O models,
caching techniques, and even user-space
storage management to address diverse
system needs. Below is a comparison of key
I/O techniques employed by Linux.

Comparison Table of I/O Techniques in Linux
Technique Description Advantages Disadvantage

s
Use Cases References

I/O
Subsystem
(Kernel
Recipes
2015)

Detailed
overview of
the Linux
kernel I/O
subsystem,
including the
block layer,
I/O
scheduling,
and
performance
metrics.

- Provides a
comprehensiv
e view of
Linux kernel
I/O
architecture-
Useful for
developers
looking to
optimize
kernel I/O
interactions

- May be too
detailed for
beginners-
Focuses on
complex
interactions,
making it
difficult for
less
experienced
users

- Kernel
development
- I/O
optimization

Nicolas, 2015

Linux
Performance
Analysis
(Netflix
Blog)

A concise
guide on
monitoring
and analyzing
Linux system
performance,
particularly
focusing on
I/O operations
and application
performance
impact.

- Quick and
easy to read-
Focuses on
performance
bottlenecks
specific to
I/O-
Provides
actionable
performance
analysis tips

- May
oversimplify
for advanced
users- Focuses
on Netflix's
system, so not
universally
applicable

- System
performance
analysis-
Application
performance
tuning

Netflix
Performance
Engineering
Team, 2015

Improving
Block-level
Efficiency
with scsi-mq

Discusses
SCSI multi-
queue (scsi-
mq)
implementatio
n in Linux,
improving

- Improves
block-level
I/O
efficiency-
Optimizes
I/O
throughput

- Specific to
SCSI devices-
May not apply
to non-SCSI
systems

- High-
performance
storage
devices-
Block-level
I/O
operations

Caldwell,
2015

mailto:muhammadazam.lashari@gmail.com


Corresponding Author*:muhammadazam.lashari@gmail.com

32

block-level
I/O efficiency
for high-
performance
storage
devices.

for storage
devices

Split-Level
I/O
Scheduling

Introduces a
framework
that splits I/O
scheduling
logic across
handlers at
three layers of
the storage
stack: block,
system call,
and page
cache.

- Improves
performance
isolation-
Enhances
scheduling
flexibility

- Complex
framework to
implement-
May increase
overhead

- Advanced
I/O
management
- Systems
with varied
performance
requirement
s

Yang et al.,
2015

Optimizing
Memory-
Mapped I/O
for Fast
Storage
Devices

Discusses
Linux's
memory-
mapped I/O
limitations and
presents
FastMap, a
design to
improve
scalability and
throughput for
fast storage
devices.

- Improves
performance
for fast
storage
devices-
Overcomes
existing I/O
bottlenecks

- Limited to
systems with
specific
hardware
requirements

- High-speed
storage
devices-
Memory-
mapped I/O
optimization

Papagiannis,
2020

The Journey
of I/O from
Userspace to
Device

Explains the
path of I/O
requests from
userspace
applications to
devices,
highlighting
the
complexities in
the Linux
kernel.

- Provides a
clear
overview of
I/O request
flow- Great
for
developers
new to Linux
I/O

- May be
overly
simplified for
experts

- Application
development
- Systems
programmin
g

Murray,
2023

PipesFS:
Fast Linux
I/O in the
Unix
Tradition

Explores
PipesFS, an
I/O
architecture
for Linux 2.6
that increases

- Supports
parallelism-
Increases I/O
throughput

- Specific to
Linux 2.6-
May not be
applicable to
modern Linux
kernels

- High-
performance
systems-
Unix-based
systems

de Bruijn &
Bos, 2008

mailto:muhammadazam.lashari@gmail.com


Corresponding Author*:muhammadazam.lashari@gmail.com

33

throughput
and supports
parallelism.

Analyzing
I/O
Amplificatio
n in Linux
File Systems

Analyzes read,
write, and
space
amplification
in Linux file
systems (ext2,
ext4, XFS,
btrfs, F2FS).

- Provides
empirical
analysis of
file systems-
Covers
multiple file
systems

- File system-
specific- May
not cover all
Linux file
systems

- File system
performance
optimization

Mohan,
Kadekodi, &
Chidambara
m, 2017

Improving
I/O
Performance
through an
In-Kernel
Disk
Simulator

Discusses
KDSim and
REDCAP,
which simulate
disk operations
to improve
I/O
performance
for both HDD
and SSDs.

- Simulates
I/O
operations for
better
testing-
Enhances
I/O
performance

- Requires
kernel
modifications-
Complex to
implement

-
Performance
testing-
Disk
simulation

Chen, 2015

EOS:
Automatic
In-vivo
Evolution of
Kernel
Policies for
Better
Performance

Introduces
EOS, a system
that
automatically
evolves kernel
policies based
on workload
characteristics.

-
Automaticall
y adjusts
kernel
parameters-
Optimizes
performance
in real-time

- May not be
applicable to
static
systems-
Requires
continuous
monitoring

- Dynamic
systems-
Workload-
based
performance
tuning

Pillai et al.,
2015

Linux
Kernel I/O
Schedulers

Overview of
Linux kernel
block I/O
subsystem,
highlighting
the importance
of schedulers
like Deadline,
Anticipatory,
and Noop.

- Provides
detailed
overview of
I/O
scheduling-
Great for
understandin
g kernel
behavior

- Can be
complex for
beginners

- Systems
with heavy
I/O
workloads-
Disk I/O
optimization

Rampelli,
2015

Solving the
Linux
Storage
Scalability
Bottlenecks

Discusses
challenges and
solutions for
scaling Linux
storage,
focusing on
the blk-mq
project.

- Improves
scalability for
Linux
storage-
Addresses
key
performance
bottlenecks

- Requires
kernel-level
changes- May
not be
compatible
with all
devices

- High-
performance
storage
systems-
Systems
with
scalability
requirement
s

Nicolas, 2015

mailto:muhammadazam.lashari@gmail.com


Corresponding Author*:muhammadazam.lashari@gmail.com

34

High
Performance
Storage
Devices in
the Linux
Kernel

Explores how
Linux kernel
storage layers
and the blk-mq
subsystem
improve
performance
for high-speed
storage
devices.

- Focuses on
high-
performance
storage-
Optimizes
I/O
performance
for SSDs

- Storage-
specific
optimization-
May require
specialized
hardware

- High-
performance
storage
systems

Nicolas, 2015

Linux I/O
Performance
Tuning

Provides
guidelines and
best practices
for tuning
Linux I/O
performance,
including disk
optimizations
for different
hardware
configurations.

- Practical for
optimizing
Linux I/O
performance-
Covers
multiple
hardware
configuration
s

- Requires
system-level
changes- May
not be optimal
for all
environments

- System
optimization
- Disk and
hardware
configuratio
n tuning

IBM, n.d.

Linux
Kernel
Developmen
t

Comprehensiv
e book
covering
Linux kernel
development,
including
discussions on
I/O
subsystems
and their
implementatio
n.

- Offers in-
depth
understandin
g of Linux
kernel
development-
Essential for
kernel
developers

- Technical
for beginners-
Requires prior
knowledge of
system
internals

- Kernel
development
- System-
level
programmin
g

Love, 2010

Solaris I/O Techniques
Solaris, an operating system known for its
reliability and performance, uses several I/O
techniques to handle the efficient transfer of
data between processes and hardware devices.
These techniques are crucial for enhancing
system performance and ensuring that I/O
operations do not become bottlenecks in
high-demand environments. The
implementation of advanced I/O techniques
such as asynchronous I/O, memory-mapped
I/O, and kernel bypass has enabled Solaris to
maintain its status as a preferred choice for

enterprise applications and high-performance
computing (HPC) environments. Below is an
examination of the prominent I/O techniques
used in Solaris, along with a comparison of
their strengths, weaknesses, and ideal use
cases.
I/O Techniques Used in Solaris:
In Solaris, several key I/O techniques are
utilized to enhance performance, reliability,
and scalability in data-intensive
environments. One of the primary techniques
is I/O multipathing, which involves using
multiple physical paths between the

mailto:muhammadazam.lashari@gmail.com


Corresponding Author*:muhammadazam.lashari@gmail.com

35

operating system and storage devices. This
ensures high availability and fault tolerance,
as it allows Solaris systems to continue
operations even if one path fails, making it
ideal for SANs (Storage Area Networks).
DTrace is another powerful tool used for
performance analysis in Solaris. It allows
real-time tracing of I/O operations and helps
system administrators diagnose bottlenecks
and optimize I/O performance by providing
detailed insights into kernel-level events.
I/O scheduling in Solaris is responsible for
managing disk access requests, determining
the order in which I/O requests are

processed to optimize performance. Solaris
supports various I/O scheduling algorithms,
including the Fairness Scheduler and Deadline
I/O Scheduler, which enhance disk I/O
operations in multi-tasking environments.
Additionally, Solaris uses ZFS (Zettabyte
File System), a high-performance file system
that integrates volume management, data
integrity, and caching. ZFS improves I/O
performance by utilizing features such as
Adaptive Replacement Cache (ARC) and
L2ARC, which speed up data retrieval by
reducing access times to frequently used data.

For more advanced I/O performance, Solaris
also employs Direct I/O, allowing
applications to bypass the page cache and
directly access storage devices, reducing
latency and improving throughput for high-
performance applications, such as databases.
NFS (Network File System) in Solaris
facilitates networked file system access,
enabling multiple systems to share files over
a network. NFS supports both synchronous
and asynchronous I/O, offering flexibility
depending on application requirements.
Fast I/O mechanisms are also used in Solaris
to bypass the regular I/O stack for specific
fast operations, reducing the overhead
associated with standard I/O processing.
This approach is often utilized in
environments where rapid data access is
crucial. The Solaris Performance Analyzer

helps administrators trace I/O activities and
identify bottlenecks, ensuring efficient
resource usage. Solaris also supports UFS
(Unix File System) and FFS (Fast File
System), which manage basic I/O operations,
though they are now largely replaced by the
more advanced ZFS. Lastly, Solaris Volume
Manager (SVM) provides storage
virtualization, optimizing I/O performance
through disk mirroring, striping, and
concatenation, which enhances storage
management and reduces latency.
Together, these techniques form a
comprehensive suite for managing I/O
operations in Solaris, ensuring high
performance, reliability, and scalability in
various use cases, from local storage
management to networked file systems.

Comparative Table of I/O Techniques in Solaris

Technique Description Advantages Disadvantag
es

Use Cases References

Oracle Solaris
11.2
Information
Library

A
comprehensi
ve guide
covering
system
administratio
n topics,
including
managing
devices, file

- Provides
detailed
documentatio
n on Solaris
I/O
management-
Covers all
system
administratio
n aspects-

- Could be
overwhelming
due to its
breadth-
Specific to
Oracle Solaris
11.2

- System
administration
- Network
service
management

Oracle,
2015

mailto:muhammadazam.lashari@gmail.com


Corresponding Author*:muhammadazam.lashari@gmail.com

36

systems, and
network
services in
Oracle
Solaris 11.2.

Up-to-date
with version-
specific
details

DTrace and
MDB
Techniques
for Solaris 10
and
OpenSolaris

Focuses on
performance
analysis
tools like
DTrace and
MDB,
providing
techniques
for
diagnosing
and
optimizing
I/O
operations in
Solaris
environment
s.

- Excellent
for real-time
performance
analysis-
Helps
optimize
system-level
operations-
Provides
deep kernel-
level insights

- Requires
expertise in
kernel
tracing-
Complex for
beginners

- Performance
optimization-
System
diagnostics

Gregg,
McDougall,
& Mauro,
2006

Oracle Solaris
11
Implementati
on and
Operations
Guide

A practical
guide that
explains how
to implement
and manage
Oracle
Solaris 11,
with specific
focus on I/O
performance
and
administratio
n.

- Provides
step-by-step
implementati
on guidance-
Tailored for
Oracle
Solaris 11
environments
- Helps with
system setup
and
management

- Focuses
mostly on
Oracle
environments-
May not apply
to other
Solaris
variants

- I/O
performance
tuning- Solaris
11 system
setup

Fujitsu
Limited,
2016

Difference
Between
Linux and
Solaris
Operating
System

A
comparison
between
Linux and
Solaris
operating
systems,
focusing on
I/O
handling,
scalability,
and system
performance.

- Highlights
differences
that can
inform
decision-
making-
Helps
identify
appropriate
environments
for specific
tasks

- Lacks deep
technical
analysis of
Solaris I/O
techniques-
Generalized
comparisons

- Deciding
between Linux
and Solaris for
enterprise
environments

Stromasys,
n.d.

mailto:muhammadazam.lashari@gmail.com


Corresponding Author*:muhammadazam.lashari@gmail.com

37

Playing With
Solaris In
2015

An article
that explores
the state of
Solaris in
2015,
focusing on
performance,
hardware
compatibility
, and I/O
operations.

- Provides
insights into
Solaris'
relevance and
evolution-
Focuses on
the I/O
features and
limitations of
Solaris 2015

- Outdated, as
it focuses only
on 2015
version

- General
Solaris
performance
evaluation

Phoronix,
2015

I/O Tracing
Data -
Oracle®
Solaris Studio
12.4:
Performance
Analyzer

Discusses
using Oracle
Solaris
Studio 12.4's
Performance
Analyzer to
trace I/O
operations
and analyze
performance
metrics.

- Facilitates
real-time I/O
tracing-
Helps
identify
bottlenecks
in I/O
performance-
Integrates
easily with
Solaris
Studio

- Requires
specific tools
and setup-
Performance-
focused with
limited
general
system
guidance

- Real-time
performance
monitoring-
Application
profiling

Oracle,
2015

Solaris I/O
Multipathing
Features

Guide to
configuring
and
managing
I/O
multipathing
to improve
high
availability
and
performance
in Solaris
systems.

- Improves
storage
redundancy-
Enhances
I/O
performance
under load-
Ensures high
availability

- Complexity
in setup- May
increase
resource
utilization

- SANs
(Storage Area
Networks)-
High-
availability
storage
environments

Oracle,
2015

Oracle Solaris
11.2
Information
Library
Updated:
2015-06-26

An updated
library
providing
additional
guidance on
I/O
management
in Oracle
Solaris 11.2,
focusing on
file systems,
devices, and

- Updated
with the
latest
version-
specific
details-
Comprehensi
ve in its
coverage of
I/O
management

- Similar
content to
previous
library
version

-
Administrativ
e use- File
system and
network
management

Oracle,
2015

mailto:muhammadazam.lashari@gmail.com


Corresponding Author*:muhammadazam.lashari@gmail.com

38

network
services.

Oracle®
Solaris Studio
12.4:
Performance
Analyzer

A tool in
Solaris
Studio 12.4
for analyzing
and profiling
I/O
performance
in Solaris
applications.

- Allows deep
analysis of
I/O
operations-
Helps
optimize
Solaris
applications
for
performance

- Requires
advanced
knowledge of
performance
analysis tools

- Performance
analysis-
Application
optimization

Oracle,
2015

How to
Measure
IOPS? -
Solaris

Provides
guidance on
measuring
Input/Outpu
t Operations
Per Second
(IOPS) in
Solaris
systems
using tools
like iostat.

- Essential
for I/O
performance
analysis-
Helps
monitor disk
health and
throughput

- Can be
misleading
without
correct
interpretation
of metrics

- Disk
performance
monitoring-
Storage
system
analysis

Unix/Linux
Community,
2015

High CPU
During I/O? -
Oracle
Diagnostician

An analysis
of high CPU
utilization
during I/O
operations in
Solaris,
providing
insights into
causes and
solutions.

- Helps
diagnose
performance
bottlenecks-
Provides
insights into
CPU and I/O
interactions

- Focused on
troubleshooti
ng, not
general
optimization-
Limited to
specific
scenarios

- CPU
performance
tuning-
Troubleshooti
ng high CPU
utilization

Oracle,
2015

Overview of
Solaris I/O
Multipathing

Provides an
overview of
Solaris I/O
multipathing
features and
how they
optimize
storage
device
connectivity
and
performance.

- Improves
fault
tolerance-
Ensures high
availability of
I/O paths

- May require
specific
hardware and
software
configuration

- Enterprise
storage
management-
Data
redundancy

Oracle,
2015

Solaris I/O
Performance

Kevin
Closson's
Blog

A blog by
Kevin
Closson that

- Offers
practical
insights on

- Lacks
comprehensive
technical

- I/O
optimizatio
n-

mailto:muhammadazam.lashari@gmail.com


Corresponding Author*:muhammadazam.lashari@gmail.com

39

delves into
various
aspects of
Solaris I/O
performance,
including
memory
mapping and
file system
optimizations
.

I/O
performance-
Covers both
theoretical
and practical
aspects of
Solaris I/O

details-
Primarily
targeted
towards
practitioners

Performanc
e tuning

Obtaining
File I/O
Statistics
Using Veritas
Extension for
Oracle Disk
Manager

A guide on
obtaining
I/O statistics
using the
odmstat
command,
which is used
for analyzing
disk activity
on Veritas
File System
(VxFS).

- Helps in
performance
diagnostics-
Provides
real-time I/O
statistics

- Specific to
Veritas and
Oracle
environments

- Disk activity
monitoring-
Veritas file
system
performance

Oracle,
2015

EMC Host
Connectivity
Guide for
Oracle Solaris

A technical
guide that
focuses on
EMC host
connectivity
in Oracle
Solaris,
discussing
how to
optimize I/O
performance
and ensure
reliable
connectivity.

- Provides
specific I/O
optimization
tips for EMC
devices-
Ensures
reliable
connectivity

- Limited to
EMC
environments-
Requires
specialized
hardware

- EMC storage
devices- I/O
performance
management

Dell
Technologi
es, 2015

1. Comparative Table of I/O Techniques Across Operating Systems

Feature Windows Linux Solaris
I/O Request Packets (IRPs) ✓ ✗ ✗

Asynchronous I/O (Overlapped I/O) ✓ ✓ ✗

I/O Completion Ports (IOCP) ✓ ✗ ✗

Device Drivers and Stacks ✓ ✓ ✗

Plug and Play (PnP) ✓ ✗ ✗

Power Management ✓ ✗ ✗

mailto:muhammadazam.lashari@gmail.com


Corresponding Author*:muhammadazam.lashari@gmail.com

40

Direct Memory Access (DMA) ✓ ✓ ✗

Fast I/O ✓ ✗ ✗

Driver Stacks ✓ ✓ ✗

Windows Kernel-Mode I/O Manager ✓ ✗ ✗

I/O Completion Mechanisms ✓ ✓ ✗

I/O Request Structures ✓ ✗ ✗

Synchronization Mechanisms ✓ ✓ ✗

Direct I/O (Memory-Mapped I/O) ✓ ✓ ✗

Windows Performance Analysis Tools ✓ ✗ ✗

I/O Subsystem (Kernel Recipes 2015) ✗ ✓ ✗

Linux Performance Analysis (Netflix Blog) ✗ ✓ ✗

Improving Block-level Efficiency with scsi-mq ✗ ✓ ✗

Split-Level I/O Scheduling ✗ ✓ ✗

Optimizing Memory-Mapped I/O for Fast Storage Devices ✗ ✓ ✗

The Journey of I/O from Userspace to Device ✗ ✓ ✗

PipesFS: Fast Linux I/O in the Unix Tradition ✗ ✓ ✗

Analyzing I/O Amplification in Linux File Systems ✗ ✓ ✗

Improving I/O Performance through an In-Kernel Disk
Simulator

✗ ✓ ✗

EOS: Automatic In-vivo Evolution of Kernel Policies for
Better Performance

✗ ✓ ✗

Linux Kernel I/O Schedulers ✗ ✓ ✗

Solving the Linux Storage Scalability Bottlenecks ✗ ✓ ✗

High Performance Storage Devices in the Linux Kernel ✗ ✓ ✗

Linux I/O Performance Tuning ✗ ✓ ✗

Linux Kernel Development ✗ ✓ ✗

Oracle Solaris 11.2 Information Library ✗ ✗ ✓

DTrace and MDB Techniques for Solaris 10 and
OpenSolaris

✗ ✗ ✓

Oracle Solaris 11 Implementation and Operations Guide ✗ ✗ ✓

Difference Between Linux and Solaris Operating System ✗ ✗ ✓

Playing With Solaris In 2015 ✗ ✗ ✓

I/O Tracing Data - Oracle® Solaris Studio 12.4:
Performance Analyzer

✗ ✗ ✓

Solaris I/O Multipathing Features ✗ ✗ ✓

Oracle Solaris 11.2 Information Library Updated: 2015-06-
26

✗ ✗ ✓

Oracle® Solaris Studio 12.4: Performance Analyzer ✗ ✗ ✓

How to Measure IOPS? - Solaris ✗ ✗ ✓

High CPU During I/O? - Oracle Diagnostician ✗ ✗ ✓

Overview of Solaris I/O Multipathing ✗ ✗ ✓

Solaris I/O Performance ✗ ✗ ✓

mailto:muhammadazam.lashari@gmail.com


Corresponding Author*:muhammadazam.lashari@gmail.com

41

Obtaining File I/O Statistics Using Veritas Extension for
Oracle Disk Manager

✗ ✗ ✓

EMC Host Connectivity Guide for Oracle Solaris ✗ ✗ ✓

2. References
1) Chawan, P. (2017). Comparison of the

Linux and Windows device driver
architectures. ResearchGate. Retrieved
from
https://www.researchgate.net/publicati
on/316511108_Comparison_of_the_Lin
ux_and_Windows_Device_Driver_Archi
tectures

2) Microsoft. (n.d.). Direct memory access
(DMA) support in Windows. Microsoft
Learn. Retrieved from
https://learn.microsoft.com/en-
us/windows-
hardware/drivers/kernel/direct-
memory-access-dma-support-in-
windows

3) Microsoft. (n.d.). Driver stacks. Microsoft
Learn. Retrieved from
https://learn.microsoft.com/en-
us/windows-
hardware/drivers/gettingstarted/driver
-stacks

4) Microsoft. (n.d.). Fast I/O. Microsoft
Press Store. Retrieved from
https://www.microsoftpressstore.com/a
rticles/article.aspx?p=2201309&seqNum
=3

5) Microsoft. (n.d.). I/O completion ports.
Microsoft Learn. Retrieved from
https://learn.microsoft.com/en-
us/windows/win32/fileio/i-o-
completion-ports

6) Microsoft. (n.d.). I/O request packets.
Microsoft Learn. Retrieved from
https://learn.microsoft.com/en-
us/windows-
hardware/drivers/gettingstarted/i-o-
request-packets

7) Microsoft. (n.d.). Overview of the
Windows I/O model. Microsoft Learn.
Retrieved from

https://learn.microsoft.com/en-
us/windows-
hardware/drivers/kernel/overview-of-
the-windows-i-o-model

8) Microsoft. (n.d.). Plug and play. Microsoft
Learn. Retrieved from
https://learn.microsoft.com/en-
us/windows-
hardware/drivers/kernel/plug-and-play

9) Microsoft. (n.d.). Power management.
Microsoft Learn. Retrieved from
https://learn.microsoft.com/en-
us/windows-
hardware/drivers/kernel/power-
management

10) Microsoft. (n.d.). Synchronization and
overlapped input and output. Microsoft
Learn. Retrieved from
https://learn.microsoft.com/en-
us/windows/win32/sync/synchronizati
on-and-overlapped-input-and-output

11) Microsoft. (n.d.). Understanding the
Windows I/O system. Microsoft Press
Store. Retrieved from
https://www.microsoftpressstore.com/a
rticles/article.aspx?p=2201309&seqNum
=3

12) Microsoft. (n.d.). Windows internals,
sixth edition, part 1. Zenk Security.
Retrieved from https://repo.zenk-
security.com/Linux%20et%20systemes%
20d.exploitations/Windows%20Internal
s%20Part%201_6th%20Edition.pdf

13) Microsoft. (n.d.). Windows kernel-mode
I/O manager. Microsoft Learn. Retrieved
from https://learn.microsoft.com/en-
us/windows-
hardware/drivers/kernel/windows-
kernel-mode-i-o-manager

14) Yu, J., & Lou, G. (2013). The server
development framework based on the

https://www.researchgate.net/publication/316511108_Comparison_of_the_Linux_and_Windows_Device_Driver_Architectures
https://www.researchgate.net/publication/316511108_Comparison_of_the_Linux_and_Windows_Device_Driver_Architectures
https://www.researchgate.net/publication/316511108_Comparison_of_the_Linux_and_Windows_Device_Driver_Architectures
https://www.researchgate.net/publication/316511108_Comparison_of_the_Linux_and_Windows_Device_Driver_Architectures
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/direct-memory-access-dma-support-in-windows
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/direct-memory-access-dma-support-in-windows
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/direct-memory-access-dma-support-in-windows
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/direct-memory-access-dma-support-in-windows
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/direct-memory-access-dma-support-in-windows
https://learn.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/driver-stacks
https://learn.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/driver-stacks
https://learn.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/driver-stacks
https://learn.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/driver-stacks
https://www.microsoftpressstore.com/articles/article.aspx?p=2201309&seqNum=3
https://www.microsoftpressstore.com/articles/article.aspx?p=2201309&seqNum=3
https://www.microsoftpressstore.com/articles/article.aspx?p=2201309&seqNum=3
https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports
https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports
https://learn.microsoft.com/en-us/windows/win32/fileio/i-o-completion-ports
https://learn.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/i-o-request-packets
https://learn.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/i-o-request-packets
https://learn.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/i-o-request-packets
https://learn.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/i-o-request-packets
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/overview-of-the-windows-i-o-model
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/overview-of-the-windows-i-o-model
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/overview-of-the-windows-i-o-model
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/overview-of-the-windows-i-o-model
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/plug-and-play
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/plug-and-play
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/plug-and-play
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/power-management
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/power-management
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/power-management
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/power-management
https://learn.microsoft.com/en-us/windows/win32/sync/synchronization-and-overlapped-input-and-output
https://learn.microsoft.com/en-us/windows/win32/sync/synchronization-and-overlapped-input-and-output
https://learn.microsoft.com/en-us/windows/win32/sync/synchronization-and-overlapped-input-and-output
https://www.microsoftpressstore.com/articles/article.aspx?p=2201309&seqNum=3
https://www.microsoftpressstore.com/articles/article.aspx?p=2201309&seqNum=3
https://www.microsoftpressstore.com/articles/article.aspx?p=2201309&seqNum=3
https://repo.zenk-security.com/Linux%20et%20systemes%20d.exploitations/Windows%20Internals%20Part%201_6th%20Edition.pdf
https://repo.zenk-security.com/Linux%20et%20systemes%20d.exploitations/Windows%20Internals%20Part%201_6th%20Edition.pdf
https://repo.zenk-security.com/Linux%20et%20systemes%20d.exploitations/Windows%20Internals%20Part%201_6th%20Edition.pdf
https://repo.zenk-security.com/Linux%20et%20systemes%20d.exploitations/Windows%20Internals%20Part%201_6th%20Edition.pdf
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/windows-kernel-mode-i-o-manager
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/windows-kernel-mode-i-o-manager
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/windows-kernel-mode-i-o-manager
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/windows-kernel-mode-i-o-manager
mailto:muhammadazam.lashari@gmail.com


Corresponding Author*:muhammadazam.lashari@gmail.com

42

completion port. Applied Mechanics and
Materials, 347-350, 1979–1982.
https://doi.org/10.4028/www.scientific.
net/AMM.347-350.1979

15) Microsoft. (n.d.). Windows performance
analysis field guide. Amazon. Retrieved
from
https://www.amazon.com/Windows-
Performance-Analysis-Field-
Guide/dp/0124167012

16) Nicolas, A. (2015). Kernel Recipes 2015:
Linux Kernel I/O subsystem – How it
works and how can I see what is it doing?
Retrieved from
https://www.slideshare.net/slideshow/k
ernel-recipes-2015-linux-kernel-io-
subsystem-how-it-works-and-how-can-i-
see-what-is-it-doing/53567082

17) Netflix Performance Engineering Team.
(2015, November 10). Linux
Performance Analysis in 60 seconds.
Netflix Tech Blog. Retrieved from
https://techblog.netflix.com/2015/11/li
nux-performance-analysis-in-60s.html

18) Caldwell, B. (2015). Improving block-
level efficiency with scsi-mq. arXiv.
https://arxiv.org/abs/1504.07481

19) Yang, S., Harter, T., Agrawal, N.,
Kowsalya, S. S., Krishnamurthy, A., Al-
Kiswany, S., Kaushik, R. T., Arpaci-
Dusseau, A. C., & Arpaci-Dusseau, R. H.
(2015). Split-level I/O scheduling. In
Proceedings of the 25th ACM
Symposium on Operating Systems
Principles (SOSP '15).
https://research.cs.wisc.edu/adsl/Public
ations/split-sosp15.pdf

20) Papagiannis, A. (2020). Optimizing
memory-mapped I/O for fast storage
devices. USENIX.
https://www.usenix.org/system/files/at
c20-paper510-slides-papagiannis.pdf

21) Murray, A. (2023, March 17). The
journey of I/O from userspace to device.
The Good Penguin.
https://www.thegoodpenguin.co.uk/blo
g/demystifying-the-journey-of-i-o-from-
userspace-to-device/

22) de Bruijn, W., & Bos, H. (2008). PipesFS:
Fast Linux I/O in the Unix tradition.
ResearchGate.
https://www.researchgate.net/profile/H
erbert_Bos/publication/220624100_Pipe
sFS_fast_Linux_IO_in_the_unix_traditi
on/links/55c876b908aea2d9bdc8c41f/Pi
pesFS-fast-Linux-I-O-in-the-unix-
tradition.pdf

23) Mohan, J., Kadekodi, R., & Chidambaram,
V. (2017). Analyzing I/O amplification
in Linux file systems. arXiv.
https://arxiv.org/abs/1707.08514

24) Chen, B. (2015). Improving I/O
performance through an in-kernel disk
simulator. UPCommons.
https://upcommons.upc.edu/bitstream/
handle/2117/100905/paper.pdf?sequenc
e=3

25) Pillai, T. S., Chidambaram, V.,
Alagappan, R., Al-Kiswany, S., Arpaci-
Dusseau, A. C., & Arpaci-Dusseau, R. H.
(2015). EOS: Automatic in-vivo
evolution of kernel policies for better
performance. arXiv.
https://arxiv.org/abs/1508.06356

26) Rampelli, R. (2015). Linux kernel I/O
schedulers. Slideshare.
https://www.slideshare.net/slideshow/li
nux-kernel-io-schedulers

27) Nicolas, A. (2015). Kernel Recipes 2015:
Solving the Linux storage scalability
bottlenecks. Retrieved from
https://www.slideshare.net/slideshow/k
ernel-recipes-2015-solving-the-linux-
storage-scalability-
bottlenecks/53515481

28) Nicolas, A. (2015). High performance
storage devices in the Linux kernel.
Slideshare.
https://www.slideshare.net/slideshow/h
igh-performance-storage-devices-in-the-
linux-kernel/59624087

29) IBM. (n.d.). Linux I/O performance
tuning. Retrieved from
https://www.ibm.com/docs/en/linux-
on-systems?topic=tips-disk-io

https://doi.org/10.4028/www.scientific.net/AMM.347-350.1979
https://doi.org/10.4028/www.scientific.net/AMM.347-350.1979
https://www.amazon.com/Windows-Performance-Analysis-Field-Guide/dp/0124167012
https://www.amazon.com/Windows-Performance-Analysis-Field-Guide/dp/0124167012
https://www.amazon.com/Windows-Performance-Analysis-Field-Guide/dp/0124167012
https://www.slideshare.net/slideshow/kernel-recipes-2015-linux-kernel-io-subsystem-how-it-works-and-how-can-i-see-what-is-it-doing/53567082
https://www.slideshare.net/slideshow/kernel-recipes-2015-linux-kernel-io-subsystem-how-it-works-and-how-can-i-see-what-is-it-doing/53567082
https://www.slideshare.net/slideshow/kernel-recipes-2015-linux-kernel-io-subsystem-how-it-works-and-how-can-i-see-what-is-it-doing/53567082
https://www.slideshare.net/slideshow/kernel-recipes-2015-linux-kernel-io-subsystem-how-it-works-and-how-can-i-see-what-is-it-doing/53567082
https://techblog.netflix.com/2015/11/linux-performance-analysis-in-60s.html
https://techblog.netflix.com/2015/11/linux-performance-analysis-in-60s.html
https://arxiv.org/abs/1504.07481
https://research.cs.wisc.edu/adsl/Publications/split-sosp15.pdf
https://research.cs.wisc.edu/adsl/Publications/split-sosp15.pdf
https://www.usenix.org/system/files/atc20-paper510-slides-papagiannis.pdf
https://www.usenix.org/system/files/atc20-paper510-slides-papagiannis.pdf
https://www.thegoodpenguin.co.uk/blog/demystifying-the-journey-of-i-o-from-userspace-to-device/
https://www.thegoodpenguin.co.uk/blog/demystifying-the-journey-of-i-o-from-userspace-to-device/
https://www.thegoodpenguin.co.uk/blog/demystifying-the-journey-of-i-o-from-userspace-to-device/
https://www.researchgate.net/profile/Herbert_Bos/publication/220624100_PipesFS_fast_Linux_IO_in_the_unix_tradition/links/55c876b908aea2d9bdc8c41f/PipesFS-fast-Linux-I-O-in-the-unix-tradition.pdf
https://www.researchgate.net/profile/Herbert_Bos/publication/220624100_PipesFS_fast_Linux_IO_in_the_unix_tradition/links/55c876b908aea2d9bdc8c41f/PipesFS-fast-Linux-I-O-in-the-unix-tradition.pdf
https://www.researchgate.net/profile/Herbert_Bos/publication/220624100_PipesFS_fast_Linux_IO_in_the_unix_tradition/links/55c876b908aea2d9bdc8c41f/PipesFS-fast-Linux-I-O-in-the-unix-tradition.pdf
https://www.researchgate.net/profile/Herbert_Bos/publication/220624100_PipesFS_fast_Linux_IO_in_the_unix_tradition/links/55c876b908aea2d9bdc8c41f/PipesFS-fast-Linux-I-O-in-the-unix-tradition.pdf
https://www.researchgate.net/profile/Herbert_Bos/publication/220624100_PipesFS_fast_Linux_IO_in_the_unix_tradition/links/55c876b908aea2d9bdc8c41f/PipesFS-fast-Linux-I-O-in-the-unix-tradition.pdf
https://www.researchgate.net/profile/Herbert_Bos/publication/220624100_PipesFS_fast_Linux_IO_in_the_unix_tradition/links/55c876b908aea2d9bdc8c41f/PipesFS-fast-Linux-I-O-in-the-unix-tradition.pdf
https://arxiv.org/abs/1707.08514
https://upcommons.upc.edu/bitstream/handle/2117/100905/paper.pdf?sequence=3
https://upcommons.upc.edu/bitstream/handle/2117/100905/paper.pdf?sequence=3
https://upcommons.upc.edu/bitstream/handle/2117/100905/paper.pdf?sequence=3
https://arxiv.org/abs/1508.06356
https://www.slideshare.net/slideshow/linux-kernel-io-schedulers
https://www.slideshare.net/slideshow/linux-kernel-io-schedulers
https://www.slideshare.net/slideshow/kernel-recipes-2015-solving-the-linux-storage-scalability-bottlenecks/53515481
https://www.slideshare.net/slideshow/kernel-recipes-2015-solving-the-linux-storage-scalability-bottlenecks/53515481
https://www.slideshare.net/slideshow/kernel-recipes-2015-solving-the-linux-storage-scalability-bottlenecks/53515481
https://www.slideshare.net/slideshow/kernel-recipes-2015-solving-the-linux-storage-scalability-bottlenecks/53515481
https://www.slideshare.net/slideshow/high-performance-storage-devices-in-the-linux-kernel/59624087
https://www.slideshare.net/slideshow/high-performance-storage-devices-in-the-linux-kernel/59624087
https://www.slideshare.net/slideshow/high-performance-storage-devices-in-the-linux-kernel/59624087
https://www.ibm.com/docs/en/linux-on-systems?topic=tips-disk-io
https://www.ibm.com/docs/en/linux-on-systems?topic=tips-disk-io
mailto:muhammadazam.lashari@gmail.com


Corresponding Author*:muhammadazam.lashari@gmail.com

43

30) Love, R. (2010). Linux kernel
development. Major.io.
https://github.com/major/major.io/blo
b/main/content/posts/2015/book-
review-linux-kernel-
development/index.md

31) Oracle. (2015). Oracle Solaris 11.2
Information Library. Retrieved from
https://docs.oracle.com/cd/E36784_01/

32) Gregg, B., McDougall, R., & Mauro, J.
(2006). DTrace and MDB Techniques
for Solaris 10 and OpenSolaris. Pearson
Education. ISBN: 978-0131568198

33) Fujitsu Limited. (2016). Oracle Solaris
11 Implementation and Operations
Guide. Retrieved from
https://www.fujitsu.com/global/Images
/Oracle%20Solaris%2011%20Implement
ation%20and%20Operations%20Guide.p
df

34) Stromasys. (n.d.). Difference Between
Linux and Solaris Operating System.
Retrieved from
https://www.stromasys.com/resources/
solaris-vs-linux-comparative-study/

35) Phoronix. (2015, March 17). Playing
With Solaris In 2015. Retrieved from
https://www.phoronix.com/review/orac
le_solaris_2015

36) Oracle. (2015). I/O Tracing Data -
Oracle® Solaris Studio 12.4:
Performance Analyzer. Retrieved from
https://docs.oracle.com/cd/E37069_01/
html/E37079/gosqo.html

37) Oracle. (2015). Solaris I/O Multipathing
Features - Managing SAN Devices and
Multipathing in Oracle Solaris 11.2.
Retrieved from
https://docs.oracle.com/cd/E36784_01/
html/E36836/agkar.html

38) Oracle. (2015). Oracle Solaris 11.2
Information Library Updated: 2015-06-
26. Retrieved from
https://docs.oracle.com/cd/E36784_01/

39) Oracle. (2015). Oracle® Solaris Studio
12.4: Performance Analyzer. Retrieved
from

https://docs.oracle.com/cd/E37069_01/
html/E37079/goyzo.html

40) Unix/Linux Community. (2015,
November 10). How to Measure IOPS? -
Solaris. Retrieved from
https://community.unix.com/t/how-to-
measure-iops/353471

41) Oracle. (2015). High CPU During I/O? -
Oracle Diagnostician. Retrieved from
https://savvinov.com/2015/01/28/high
-cpu-during-io/

42) Oracle. (2015). Overview of Solaris I/O
Multipathing. Retrieved from
https://docs.oracle.com/cd/E23824_01/
html/E23097/agkap.html

43) Closson, K. (2015). Solaris I/O
Performance | Kevin Closson's Blog.
Retrieved from
https://kevinclosson.net/category/solar
is-io-performance/

44) Oracle. (2015). Obtaining File I/O
Statistics Using Veritas Extension for
Oracle Disk Manager. Retrieved from
https://www.veritas.com/support/en_U
S/doc/79564627-166315487-
0/v4465083-166315487

45) Dell Technologies. (2015). EMC Host
Connectivity Guide for Oracle Solaris.
Retrieved from
https://www.delltechnologies.com/asset
/en-gb/products/storage/technical-
support/docu5132.pdf

https://github.com/major/major.io/blob/main/content/posts/2015/book-review-linux-kernel-development/index.md
https://github.com/major/major.io/blob/main/content/posts/2015/book-review-linux-kernel-development/index.md
https://github.com/major/major.io/blob/main/content/posts/2015/book-review-linux-kernel-development/index.md
https://github.com/major/major.io/blob/main/content/posts/2015/book-review-linux-kernel-development/index.md
https://docs.oracle.com/cd/E36784_01/
https://www.fujitsu.com/global/Images/Oracle%20Solaris%2011%20Implementation%20and%20Operations%20Guide.pdf
https://www.fujitsu.com/global/Images/Oracle%20Solaris%2011%20Implementation%20and%20Operations%20Guide.pdf
https://www.fujitsu.com/global/Images/Oracle%20Solaris%2011%20Implementation%20and%20Operations%20Guide.pdf
https://www.fujitsu.com/global/Images/Oracle%20Solaris%2011%20Implementation%20and%20Operations%20Guide.pdf
https://www.stromasys.com/resources/solaris-vs-linux-comparative-study/
https://www.stromasys.com/resources/solaris-vs-linux-comparative-study/
https://www.phoronix.com/review/oracle_solaris_2015
https://www.phoronix.com/review/oracle_solaris_2015
https://docs.oracle.com/cd/E37069_01/html/E37079/gosqo.html
https://docs.oracle.com/cd/E37069_01/html/E37079/gosqo.html
https://docs.oracle.com/cd/E36784_01/html/E36836/agkar.html
https://docs.oracle.com/cd/E36784_01/html/E36836/agkar.html
https://docs.oracle.com/cd/E36784_01/
https://docs.oracle.com/cd/E37069_01/html/E37079/goyzo.html
https://docs.oracle.com/cd/E37069_01/html/E37079/goyzo.html
https://community.unix.com/t/how-to-measure-iops/353471
https://community.unix.com/t/how-to-measure-iops/353471
https://savvinov.com/2015/01/28/high-cpu-during-io/
https://savvinov.com/2015/01/28/high-cpu-during-io/
https://docs.oracle.com/cd/E23824_01/html/E23097/agkap.html
https://docs.oracle.com/cd/E23824_01/html/E23097/agkap.html
https://kevinclosson.net/category/solaris-io-performance/
https://kevinclosson.net/category/solaris-io-performance/
https://www.veritas.com/support/en_US/doc/79564627-166315487-0/v4465083-166315487
https://www.veritas.com/support/en_US/doc/79564627-166315487-0/v4465083-166315487
https://www.veritas.com/support/en_US/doc/79564627-166315487-0/v4465083-166315487
https://www.delltechnologies.com/asset/en-gb/products/storage/technical-support/docu5132.pdf
https://www.delltechnologies.com/asset/en-gb/products/storage/technical-support/docu5132.pdf
https://www.delltechnologies.com/asset/en-gb/products/storage/technical-support/docu5132.pdf
mailto:muhammadazam.lashari@gmail.com


Corresponding Author*:muhammadazam.lashari@gmail.com

44

mailto:muhammadazam.lashari@gmail.com

	Windows I/O Techniques
	Comparison Table of I/O Technique Table in Windows

	Linux: I/O Techniques Used
	Comparison Table of I/O Techniques in Linux

	Solaris I/O Techniques
	I/O Techniques Used in Solaris:
	Comparative Table of I/O Techniques in Solaris

	1.Comparative Table of I/O Techniques Across Operati
	2.References

